COSC 462

Finite Difference Methods

Piotr Luszczek
Finite Difference Methods and PDEs

- Finite Difference Methods are commonly used to solve PDEs
- PDEs are used in many applications
 - Computational Fluid Dynamics
 - Water and gas flow
 - Multi-scale models
 - Weather prediction
 - Structural mechanics
 - Deformations of rigid structures
 - Wave propagation
 - Acoustics
Approximating Derivative with Finite Difference

The formulas assume that function f() is continuous
And so is its derivative f’()
Sample PDE: Poisson Equation

- Poisson equation has a simple form in 2D
 \[u_{xx} + u_{yy} = f(x,y) \]

- Applications include
 - Electricity
 - Magnetism
 - Gravity
 - Heat distribution
 - Fluid flow
 - Torsion

- When \(f(x,y) = 0 \) we call it Laplace equation

\[
u_{xx} = \frac{\partial^2 u}{\partial x \partial x} \approx \frac{u(x+h,y) - 2u(x,y) + u(x-h,y)}{h^2}\]
Mapping Formulas to Geometry

In 2D...

\[u_{i-1,j} \approx \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} \]

\[u_{yy} \approx \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h^2} \]

and in 3D...

\[u_{xx} + u_{yy} + u_{zz} = f(x, y, z) \]
Iterating Towards Steady-State

Start with $u_{i,j}$ estimates

$$\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h^2} = f_{i,j}$$

Steady-state with final values of $u_{i,j}$

$$\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h^2} = f_{i,j}$$
Meshes: Partitioning and Agglomeration

Computation:
\(\Theta(N^2/P) \)

Communication (N by N mesh):
\(\Theta(N) \)

Computation:
\(\Theta(N/\sqrt{P} \times N/\sqrt{P}) = \Theta(N^2/P) \)

Communication (N by N mesh):
\(\Theta(N/\sqrt{P}) \)
Implementation: Ghost Cells

1. Compute on local cells
2. Compute on ghost cells
3. Exchange ghost cells
4. If not converged GOTO 1

This is usually combined in a clever implementation
Communication is local
• Divisibility
 – More complex math (no simple way to pad to N+k)
 • We have to tolerate slight imbalance
 – Still want square processor grid
 • Might need to leave processors off for good prime factors

• Numerical issues
 – Convergence is a more complicated math problem
 • Need continuous boundary conditions etc.
 – More complicated PDEs and local solvers are a necessity

• Mesh structure
 – It does not always make sense to have uniform mesh
 – The mesh might change as computation proceeds
Mesh and Its Adjacency Matrix

Adjacency matrix is sparse:

- Natural ordering (other orderings possible: red-black, nested dissection, Cuthill-McKee, ...)

\[
\begin{pmatrix}
-4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & -4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & -4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & -4 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]