
http://icl.eecs.utk.edu/magma/FIND OUT MORE AT

SPONSORED BYWITH SUPPORT FROM

A COLLABORATION OF

MAGMA (Matrix Algebra on GPU and Multicore Architectures) is a collection of next generation linear
algebra (LA) libraries for heterogeneous architectures. MAGMA is designed and implemented by the team
that developed LAPACK and ScaLAPACK, incorporating the latest developments in hybrid synchronization-
and communication-avoiding algorithms, as well as dynamic runtime systems (e.g. StarPU). Interfaces for
the current LAPACK and BLAS standards are supported to allow computational scientists to effortlessly
port any LA-reliant software components to heterogeneous architectures. MAGMA allows applications to
fully exploit the power of current heterogeneous systems of multi/many-core CPUs and multi-GPUs to
deliver the fastest possible time to accurate solution within given energy constraints.

HYBRID ALGORITHMS

MAGMA uses a hybridization methodology where
algorithms of interest are split into tasks of varying
granularity and their execution scheduled over the
available hardware components. Scheduling can
be static or dynamic. In either case, small
non-parallelizable tasks, often on the critical path,
are scheduled on the CPU, and larger more
parallelizable ones, often Level 3 BLAS, are
scheduled on the GPU.

MAGMA BLAS

MAGMA BLAS targets a subset of BLAS routines
for NVIDIA GPUs that are specific to MAGMA and
can improve on CUBLAS. MAGMA BLAS supports
streaming and includes routines for Fermi and for
the older generation of Tesla GPUs. Also included is
a new ZGEMM obtained through autotuning.

MAGMA 1.1
• Linear Systems Solvers

• Eigenvalue Problem Solvers

• MAGMA BLAS

• CPU and GPU Interfaces

• Multiple Precision Support

 (S/D/C/Z, including mixed precision)

• NEW Non-GPU-resident one-sided
 factorizations

• NEW Autotuned ZGEMM

• NEW Multicore and multi-GPU Support

• NEW Tile one-sided factorizations w/
 StarPU dynamic scheduling

• NEW Matrix inversion

• NEW LAPACK testing

• Linux, Windows, Mac OS

UPCOMING
• OpenCL port

• Distributed systems support

• Autotuning framework

• Extended functionality, including sparse
linear algebra

MATRIX ALGEBRA ON GPU AND MULTICORE ARCHITECTURES

PERFORMANCE

Keeneland system, using one node
3 NVIDIA GPUs (M2070 @ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

Fermi C2050 (448 CUDA Cores @ 1.15 GHz)
+ Intel Q9300 (4 cores @ 2.50 GHz)
DP peak 515 + 40 GFlop/s
Power * ~220 W

AMD Istanbul
[8 sockets x 6 cores (48 cores) @2.8GHz]
DP peak 538 GFlop/s
Power * ~1,022 W

 * Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430

GPU CPU

0

200

400

600

800

G
flo

p/
s

Matrix Size

3 GPUs

2 GPUs

1 GPU

 MAGMA LU in double precision on multi-GPUs (Fermi C2070)

0 6000 12000 18000 24000 30000

MAGMA LU in double precision on single GPU (C2050)

0

60

120

180

240

1024 2048 3072 4032 5184 6016 7040 8064 9088 10112

G
flo

p/
s

Matrix Size

GPU

CPU

55 MFlop/W*

1,090 MFlop/W*

http://icl.eecs.utk.edu/magma/FIND OUT MORE AT

SPONSORED BYWITH SUPPORT FROM

A COLLABORATION OF

MAGMA 1.1 ROUTINES & FUNCTIONALITIES

MATRIX OPERATION ROUTINE CPU
INTERFACES

GPU

SINGLE GPU MULTI-GPU MULTI-GPU
STATIC DYNAMIC

One-sided Factorizations (LU, QR, Cholesky)

Linear System Solvers

Linear Least Squares (LLS) Solvers

Matrix Inversion

Singular Value Problem (SVP)

Non-symmetric Eigenvalue Problem

Symmetric Eigenvalue Problem

Generalized Symmetric Eigenvalue Problem

✓
✓
✓
✓
✓
✓
✓
✓

✓ ✓
✓
✓
✓

SINGLE GPU

MULTI-GPU
STATIC

MULTI-GPU
DYNAMIC

LI
N

EA
R

EQ
U

AT
IO

N
S

LL
S

ST
A

N
D

A
RD

EV
P

STAND.
SVP

G
EN

ER
A

LI
ZE

D
EV

P

GE

SPD/HPD

GE

GE

SY/HE

GE

SPD/HPD

Solve using LU
Solve using MP
Solve using Cholesky
Solve using MP
Solve LLS using QR
Solve using MP
Compute e-values,
optionally e-vectors
Computes all e-values,
optionally e-vectors
Range (D&C)
Range (B & I It.)
Range (MRRR)
Compute SVD,
optionally s-vectors
Compute all e-values,
optionally e-vectors
Range (D&C)
Range (B & I It.)
Range (MRRR)

{sdcz}gesv
{zc,ds}gesv
{sdcz}posv
{zc,ds}posv
{sdcz}geqrs
{zc,ds}geqrsv
{sdcz}geev

{sd}syevd
{cz}heevd
{cz}heevdx
{cz}heevx
{cz}heevr
{sdcz}gesvd

{sd}sygvd
{cz}hegvd
{cz}hegvdx
{cz}hegvx
{cz}hegvr

Hybrid LAPACK algorithms with static scheduling
and LAPACK data layout

Hybrid LAPACK algorithms with 1D block cyclic
static scheduling and LAPACK data layout

Tile algorithms with StarPU scheduling and tile
matrix layout

{sdcz}getrf
{sdcz}getrs
{sdcz}getri
{sdcz}potrf
{sdcz}potrs
{sdcz}potri
{sdcz}trtri
{sdcz}geqrf
{sd}orgqr
{cz}ungqr
{sd}ormqr
{cz}unmqr
{sdcz}gelqf
{sdcz}geqlf
{sd}ormql
{cz}unmql
{sdcz}gehrd
{sd}orghr
{cz}unghr
{sd}sytrd
{cz}hetrd
{sd}orgtr
{cz}ungtr
{sd}ormtr
{cz}unmtr
{sdcz}gebrd
{sd}sygst
{cz}hegst

LI
N

EA
R

EQ
U

AT
IO

N
S

O
RT

H
O

G
O

N
A

L
FA

CT
O

RI
ZA

TI
O

N
S

ST
A

N
D

A
RD

EV
P

SVD
GENER-
ALIZED

EVP

GE

SPD/HPD

TR

GE

GE

GE

SY/HE

GE

SPD/HPD

LU
Solve
Invert
Cholesky
Solve
Invert
Invert
QR
Generate Q

Multiply matrix by Q

LQ factorization
QL factorization
Multiply matrix by Q

Hessenberg reduction
Generate Q

Tridiagonalization

Generate Q

Multiply by Q

Bidiagonalization
Reduction to standard
form

✓

✓

✓

✓
✓

✓
✓
✓
✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓

✓

✓

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓

✓
✓

✓
✓
✓
✓

✓
✓

MATRIX OPERATION ROUTINE CPU
INTERFACES

GPU

DRIVER ROUTINES IN MAGMA 1.1

COMPUTATIONAL ROUTINES IN MAGMA 1.1

GE
SPD/HPD
TR
D & C
B & I IT
MP

– General
– Symmetric/Hermitian Positive Definite
– Triangular
– Divide & Conquer
– Bisection & Inverse Iteration
– Mixed-precision Iterative Refinement

 Naming Convention: magma_{routine name}[_gpu]

	SC11 MAGMA-1
	SC11 MAGMA-2

