Joint Institute for Computational Sciences

- State funded, UT institute on the Oak Ridge campus advancing shared objectives in computational science research, education, workforce development, and national leadership
 - About $110M in external funding
- Internationally recognized research and faculty in computational and computer science, chemistry and materials science, mathematics, and molecular biology
- Operate national facilities and support campus communities
 - National Institute of Computational Science: Kraken, (Athena), Nautilus, Keeneland
 - XSEDE
Joint Institute for Computational Sciences

- Provide resources and support for UT researchers and educators
 - Training, education, consulting, curriculum development
 - Kraken, (Athena), Nautilus, Keeneland, and ties to ORNL facilities
- Support program development in computational science
 - Collaboration on proposal development and execution; deployment and operation of advanced resources
 - Bridge between UT and ORNL staff and programs
- Educate new generations of scientists in all aspects of computation
 - AACE Application Acceleration Center of Excellence
 - Graduate and undergraduate internships, REU, work experience
 - IGMCS
First academic petaflop
Delivers 65% of all NSF compute cycles

Awarded the NSF Track 2B ($65M) plus $10M from UT
Phased deployment of Cray XT systems
Staffed with ~30 FTEs and growing rapidly
Total funding ~$100M
Kraken

#3 Fastest machine in the world (Top500 11/09)

9,408 dual socket, 16GB memory nodes
2.6 GHz 6-core AMD Istanbul processor per socket
1.17 Petaflops peak performance (112,986 cores)
Cray Seastar 2 3-D Torus interconnect
3.3 Petabytes DDN disk (raw)
147 Terabytes memory
100 cabinets
~2,200 sq ft
Lightweight kernel
Kraken Allocations by Discipline

- Physics - 130; 26%
- Astronomical Sciences - 120; 21%
- Atmospheric Sciences - 510; 15%
- Molecular Biosciences - 410; 10%
- Chemistry - 140; 6%
- Chemical, Thermal Systems - 610; 5%
- Staff Accounts - 940; 4%
- Materials Research - 150; 4%
- Earth Sciences - 520; 3%
- Advanced Scientific Computing - 340; 3%
- Cross-Disciplinary Activities - 360
TOP 10 Sites for November 2010

For more information about the sites and systems in the list, click on the links or view the complete list.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>National Supercomputing Center in Tianjin, China</td>
<td>Tianhe-1A - NUDT TH MPP, X5670 2.93GHz 6C, NVIDIA GPU, FT-1000 8C NUDT</td>
</tr>
<tr>
<td>2</td>
<td>DOE/SC/Oak Ridge National Laboratory, United States</td>
<td>Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz Cray Inc.</td>
</tr>
<tr>
<td>3</td>
<td>National Supercomputing Centre in Shenzhen (NSCS), China</td>
<td>Nebulae - Dawning TC3600 Blade, Intel X5650, Nvidia Tesla C2050 GPU Dawning</td>
</tr>
<tr>
<td>4</td>
<td>GSIC Center, Tokyo Institute of Technology, Japan</td>
<td>TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows NEC/HP</td>
</tr>
<tr>
<td>5</td>
<td>DOE/SC/LBNL/NERSC, United States</td>
<td>Hopper - Cray XE6 12-core 2.1 GHz Cray Inc.</td>
</tr>
<tr>
<td>6</td>
<td>Commissariat a l’Energie Atomique (CEA), France</td>
<td>Tera-100 - Bull bullx super-node S6010/S6030 Bull SA</td>
</tr>
<tr>
<td>7</td>
<td>DOE/NNSA/LANL, United States</td>
<td>Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband IBM</td>
</tr>
<tr>
<td>8</td>
<td>National Institute for Computational Sciences/University of Tennessee, United States</td>
<td>Kraken XT5 - Cray XT5-HE Opteron 6-core 2.6 GHz Cray Inc.</td>
</tr>
<tr>
<td>9</td>
<td>Forschungszentrum Juelich (FZJ), Germany</td>
<td>JUGENE - Blue Gene/P Solution IBM</td>
</tr>
<tr>
<td>10</td>
<td>DOE/NNSA/LANL/SNL, United States</td>
<td>Cielo - Cray XE6 8-core 2.4 GHz Cray Inc.</td>
</tr>
</tbody>
</table>
O(1) programmers
O(100,000) nodes
O(1,000,000) cores
O(10,000,000) threads … and more are coming

- Complexity kills our ambitions in HPC
- How do we write code for computers that do not yet exist?
- Why are our equations are ~100 lines but the program is ~1,000,000 lines & growing
 - This is the semantic gap – how to shrink it?
Multiresolution Adaptive Numerical Scientific Simulation

George I. Fann1, Diego Galindo1, Robert J. Harrison1,2, Rebecca Hartman-Baker1, Judy Hill1, and Jun Jia

1Oak Ridge National Laboratory
2University of Tennessee, Knoxville

In collaboration with

Gregory Beylkin4, Lucas Monzon4, Hideo Sekino5 and Edward Valeev6

4University of Colorado
5Toyohashi Technical University, Japan
6Virginia Tech

robert.harrison@utk.edu
What is MADNESS?

- A general purpose numerical environment for reliable and fast scientific simulation
 - Chemistry, nuclear physics, atomic physics, material science, nanoscience, climate, fusion, ...
- A general purpose parallel programming environment designed for the peta/exa-scales
- Addresses many of the sources of complexity that constrain our HPC ambitions

http://code.google.com/p/m-a-d-n-e-s-s
http://harrison2.chem.utk.edu/~rjh/madness/
Molecular Electronic Structure

- Energy and gradients

- ECPs coming (Sekino, Kato)

- Response properties (Vasquez and Sekino)

- Still not as functional as previous Python version

Spin density of solvated electron
Nuclear physics

J. Pei, G.I. Fann, Y. Ou, W. Nazarewicz
UT/ORNL

- DOE UNDEF
- Nuclei & neutron matter
- ASLDA
- Hartree-Fock Bogliobulov
- Spinors
- Gamov states

Imaginary part of the seventh eigen function
two-well Wood-Saxon potential
Solid-state electronic structure

- Thornton, Eguiluz and Harrison (UT/ORNL)
 - NSF OCI-0904972: Computational chemistry and physics beyond the petascale
- Full band structure with LDA and HF for periodic systems
- In development: hybrid functionals, response theory, post-DFT methods such as GW and model many-body Hamiltonians via Wannier functions

Coulomb potential isosurface in LiF
Time-dependent electronic structure

Vence, Krstic, Harrison
UT/ORNL

H_2^+ molecule in laser field (fixed nuclei)
Nanoscale photonics
(Reuter, Northwestern; Hill, Harrison ORNL)

Diffuse domain approximation for interior boundary value problem; long-wavelength Maxwell equations; Poisson equation; Micron-scale Au tip 2 nm above Si surface with H2 molecule in gap – 10^7 difference between shortest and longest length scales.
The math behind the MADNESS

- Multiresolution

\[V_0 \subset V_1 \subset \cdots \subset V_n \]

\[V_n = V_0 + (V_1 - V_0) + \cdots + (V_n - V_{n-1}) \]

- Low-separation rank

\[f(x_1, \ldots, x_n) = \sum_{l=1}^{M} \sigma_l \prod_{i=1}^{d} f_i^{(l)}(x_i) + O(\epsilon) \]

\[\| f_i^{(l)} \|_2 = 1 \quad \sigma_l > 0 \]

- Low-operator rank

\[A = \sum_{\mu=1}^{r} u_\mu \sigma_\mu v_\mu^T + O(\epsilon) \]

\[\sigma_\mu > 0 \quad v_\mu^T v_\lambda = u_\mu^T u_\lambda = \delta_{\mu\lambda} \]
JICS and NICS contacts

- JICS http://www.jics.tennessee.edu
- NICS http://www.nics.tennessee.edu

Campus contacts
- Christian Halloy halloy@jics.utk.edu
- Kwai Wong wong@jics.utk.edu

NICS outreach
- James Ferguson jwf@utk.edu

JICS director
- Robert J. Harrison robert.harrison@utk.edu