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1 Abstract

Abstract. Collective communications are invaluable to modern high
performance applications, although most users of these communication
patterns do not always want to know their inner most working. The
implementation of the collectives are often left to the middle-ware devel-
oper such as those providing an MPI library. As many of these libraries
are designed to be both generic and portable the MPI developers com-
monly offer internal tuning options suitable only for knowledgeable users
that allow some level of customization. The work presented in this paper
aims not only to provide a very efficient set of collective operations for
use with the Open MPI implementation but also to make the control
and tuning of them straightforward and flexible. Additionally this paper
demonstrates a novel example of the proposed frameworks flexibility, by
dynamically tuning a MPI Alltoallv algorithm during runtime.

2 Introduction

Collective (group) communications are of paramount importance to HPC users
due to the extent on which developers rely on them for optimal performance[8].
In many cases obtaining optimal performance requires deep internal knowledge
of the collective algorithms and the target architectures which many users may
not either have access to or have no understanding of. The reasons for these gaps
are many. The implementation of the collectives are often left to the middleware
developers such as those providing an MPI library. As many of these libraries
are designed to be both generic and portable the MPI developers are left in the
difficuilt position of deciding just how to implement the basic operations in such
a way that they meet the needs of all possible users without knowing just how
they will be utilised.

Previous generations of collective implementations usually offered a number
of possibly optimal low level implementations and some kind of a fixed decision
on when to use one version or the other, in a hope that this would cover most
usage cases. Although much pervious work has focused on either measurement
(instrumentation) or modelling to make these decisions (ACCT, ATCC OCC,



LogGP, Magpie etc) rather than on how to either incorporate them into a run-
time system, or make them more accessable.

In many cases making the underlying decisions accessable either directly to
knowledgable users, or via automated tools is enought to correct for any [per-
formance] problems with the default decisions implemented by the MPI imple-
mentors.

This paper describes current work on the tuned collectives module developed
by the University of Tennessee for distribution within the Open MPI 1.1 release.
Some sections of the research shown here (i.e. dynamic rule bases) are still how-
ever experimental and may never be officially distributed with Open MPI. This
paper is ordered as follows: Section 3 detailed related work in collective commu-
nications and control. Section 4 details the Open MPI MCA architecture and
Section 5 describes the tuned collectives component design and performance,
section 6 shows how dynamic rules can be used to implement runtime tuning
and section 7 concludes the paper and lists future work. Results are included in
each of the relavent sections.

3 Related work

All MPI implementations support MPI collective operations as defined in the
MPI 1.2 specification [7]. Many of the portable implementations support a static
choice mechanism such as LAM/MPI, MPICH [5], FT-MPI [4] and the basic col-
lectives component [13] of Open MPI [10]. In many cases these implementations
are tuned primarily for closely coupled systems and clusters and the decision
functions are buried deep inside the implementations. System that are designed
for Grid and wide-area use also have to differentiate between various collective
algorithms but at a much higher level, such as when implementing hierarchical
topologies to hide latency effects. Systems such a Magpie [11], PACX-MPI [3,
2] and MPICH-G2 all use various metrics to control which algorithms are used.
Although these systems do not explicitly export control of these parameters to
users, their code structure does allow these points to be more easily found than
with closely coupled systems.

4 Current collectives framework in Open MPI

4.1 Open MPI collective framework and basic components

The current Open MPI[10] architecture is a component based system, and is
called the Modular Component Architecture (MCA). The MCA architecture
was designed to allow for a customized (and optimized) MPI implementation
that is built from a range of possible components at runtime, allowing for a well
architect ed code base that is both easy to test across multiple configurations
and easy to integrate into a new platform. The architectures design is a follow
up to the SSI system[12] originally developed for the LAM7. The system consists
of a MCA framework which loads components (shared objects) during MPI Init.



If any of these components can be utilized (they can disqualify themselves via
a query function) they become modules (a component instance coupled with
resources such as allocated memory). Many of the subsystems within Open MPI
such as low level point-to-point messaging, collective communication, MPI-2 I/O,
and topology support are all built as components that can be requested by the
user at MPIRUN time.

The Open MPI 1.0 release supplied a number of MPI components for col-
lective communication that each contained a complete set of MPI 1.2 collective
operations. The components being: basic, shm and self.

The shm component contains collectives for use when Open MPI is running
completely on a shared memory system. The self component is a special feature
within MPI for use on the MPI COMM SELF communicator. The basic com-
ponent is the default component used when not using either shared memory or
self. The basic component contains at least one implementations per collective
operation. For broadcast and reduce it offers two implementations, one linear
and the other using a binary tree. Further details of the Open MPI collective
framework can be found in [13].

5 New tuned collectives and decision module

The new tuned collectives module from the University of Tennessee, Knoxville
(UTK) has a number of goals, and aims to support the following:

1. Multiple collective implementations
2. Multiple logical topologies
3. Wide range fully tunable parameters
4. Efficient default decisions
5. Compile new decision functions into the component
6. Specify a simple decision map file selectively for any parameter set
7. Provide a means to dynamically alter a decision function completely

Items (1-3) are paramount for any collective implementation to be able to
provide performance on an unknown system that the developer has no direct
access to. Item (4) is required to allow users to just down load and install Open
MPI and get reasonable performance. Item (5) is for more knowledgeable users
who wish to change the default decision and allow for the fastest use of that new
decision without fully replacing the current default rules. If a comprehensive
benchmarking of the Open MPI collectives module has been completed, then
the output from this could be feed back into the MPI runtime (item 6) and used
instead of the default rule base. The final item is quite unusual and allows for
the entire (or part of) the rule base to be changed during runtime. This in effect
allows for adaptive behavior of the decision functions. This is explored later in
section 6.



5.1 Collective algorithms and parameters

Previous studies of MPI collectives have shown that no single algorithm or topol-
ogy is optimal and that the variations in network topology, interconnection tech-
nology, system buffering and so on, all effect the performance of a collective op-
eration [9]. Thus, the tuned module supports a wide number of algorithms for
performing MPI collective operations. Some of these implementations are relay
on fixed communication topologies such as the Bruck and recursive doubling,
others are general enough to handle almost any topology i.e. trees with varying
fan-outs, pipelines etc. Another additional parameter implemented in the tuned
collectives module is segment size. In an attempt to increase performance by
utilizing as many communication links as possible we have modified most al-
gorithms to segment the users data into smaller blocks (segments). This allows
the algorithm to effectively pipeline all transfers. The segment size is however
not a simple factor of network MTU, sender overhead gap etc, and has to be
benchmarked to find optimal values.

5.2 Default tuned decision function

For the module to be named tuned implies that it is in fact tuned for some
system somewhere. In fact it has been tuned for a cluster of AMD64 processors
communicating across a Gigabit Ethernet interconnect located at UTK. The
tuning was performed using an exhaustive benchmarking technique as part of the
OCC[6] and Harness/FT-MPI[4] projects. (The module shares almost the same
decision functions as FT-MPI although they both implement slightly different
ranges of algorithms).

A comparison of the tuned component compared to the basic collectives
module in Open MPI, MPICH2 and FT-MPI is shown in figures 1 a & b. The
first figure shows absolute performances and the second is normalized to the
optimal of the 4 systems (i.e. the Y-Axis shows how much slower the others are
compared to the best for that message size and operation).

5.3 Architecture and calling sequence

The overall architecture of the tuned collectives component is governed by both
the MCA framework and the structure of the communicator data structure. As
the upper level MPI architecture calls the function pointer in the communicator
directly, this forces the first level function in the component to have the same ar-
gument list as that of the MPI API, i.e. no extra arguments. As discussed above
many of the backend implementations of the collectives require extra parameters,
such as topology and segment size. We resolve this issue by using at least a two
level architecture. The first level takes normal MPI arguments, decides which
algorithm/implementation to use, creates any additional parameters and then
invokes it, passing any results or errors back to the MPI layer. I.e. the first level
function is both a decision function and a dispatch function. The second or lower
layer is the implementation layer, and contains the actual algorithm themselves.
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Ompi, basic, 32
Ompi, tuned, 32
MPICH2, 32
FT−MPI, 32

Ompi, basic, 32
Ompi, tuned, 32
MPICH2, 32
FT−MPI, 32

Fig. 1. Absolute and Relative (compared to best) performance of 4 collective imple-
mentations, Open MPI (basic,tuned), MPICH2 and FT-MPI

Adding this additional layer of redirection allows the component complete flex-
ibility in how it handles requests, as all functions except the decision/dispatch
are hidden from the above layers. The component additionally implements some
support functions to create and manage virtual topologies. These topologies are
cached on either the component, or on each instance of the module as configured
by the user.

5.4 User overrides

One of the goals of the tuned module was to allow the user to completely control
the collective algorithms used during runtime. From the architecture it is clear
that the upper level MPI API does not offer any methods of informing the com-
ponent of any changes (except through MPI attributes) as the decision/dispatch
function has the same arguments as the collective calls. This issue is resolved by
the MCA framework, which allows for the passing of key:value pairs from the
environment into the runtime. These values can then be looked up by name.

To avoid incurring any kind of performance penalty during normal usage,
these overrides are not checked for unless a special trigger value known as
mca coll tuned use dynamic rules is set. When this value is set, the default com-
piled in decision routines are replaced by other routines that check for all the
possible collective control parameters. To further reduce overheads, these pa-
rameters are only looked up at the MCA level during communicator creation
time, and their values are then cached on each communicators collective module
data segment.

Forcing choices The simplest choice that the user might want is the ability to
completely override the collective component and choose a particular algorithm
and its operating parameters (such as topology and segmentation sizes) directly.
In the tuned component this is known as forcing a decision on the component,



and it can be performed on as many or as few MPI collectives as required. The
example below illustrates how the user can force the use of a Bruck based barrier
operation from the command line.

host% mpirun -np N -mca coll_tuned_use_dynamic_rules 1
-mca coll_tuned_barrier_algorithm 4 myapp.bin

The range of possible algorithms available for any collective can obtained from
the system by running the Open MPI system utility ompi info with the argu-
ments -mca coll tuned use dynamic rules 1 -param coll all. The possible range
for an MPI Broadcast is currently:

MCA coll: information "coll_tuned_bcast_algorithm_count" (value: "6")
Number of bcast algorithms available

MCA coll: parameter "coll_tuned_bcast_algorithm" (current value: "0")
Which bcast algorithm is used. Can be locked down to choice of:

0 ignore, 1 basic linear, 2 chain, 3: pipeline, 4: split binary tree,
5: binary tree, 6: BM tree.

It is important to note that the value 0 forces the component to default to the
built in compiled decision rules. Further control parameters exist that control
both topology and message transfers such as coll tuned bcast algorithm segmentsize,
coll tuned bcast algorithm tree fanout and X chain fanout. These parameter names
are common to most collective operations.

Selective file driven decision functions Another alternative to forcing the
complete collective operations is to force only parts of the decision space in a
semi-fixed manner. An example of such a usage scenario would be in the case of
a user having tuned an MPI collective for a range of input parameters (message
size, communicator size) either manually or via some automated tool [6]. The
user could then tell the MPI collective component to use these values within a
set range by supplying a file that contains as many data points as the user knows.
To decrease both storage and evaluation time the file contents are stored using
a run-length technique that effectively only stores the switching points for each
algorithm. An example version for an MPI Alltoall operation is shown below:

1 # num of collectives
3 # ID = 3 Alltoall collective (ID in coll_tuned.h)
2 # number of com sizes
1 # comm size 1
1 # number of msg sizes 1
0 1 0 0 # for message size 0, linear 1, topo 0, 0 segmentation
8 # comm size 8
4 # number of msg sizes
0 1 0 0 # for message size 0, linear 1, topo 0, 0 segmentation
32768 2 0 0 # 32k, pairwise 2, no topo or segmentation
262144 1 0 0 # 256k, use linear 1, no topo or segmentation
524288 2 0 0 # message size 512k+, pairwise 2, topo 0, 0 segmentation
# end of first collective



6 Runtime dynamic feedback control

Runtime Controllable Tuned Collectives decision functions The ulti-
mate level of dynamic control is to avoid compiling a decision rule set at all, but
instead to construct it fully at runtime. As the rule base is then represented by
a set of data structures it can be modified on the fly during runtime (with the
appropriate locking in place to avoid race conditions). To allow experimentation
with this we developed and implemented a dynamic rule base system around the
concept of small expression blocks operating on standardized parameters derived
from the collective call arguments. The fundamental premise is that any decision
table is really an optimizes set of expressions operating on derived arguments
that eventually resolve down to a single function call (or function pointer) and
any additional parameters (such as segment size, topology) needed. With this
in mind we designed a simple rule building block that operates on standardized
parameters.

Standardized parameters are those derived from normal MPI collective call
argument lists. We examined our current decision functions to see which param-
eters are most commonly used. These were found to include: data size (extent
* data count), location of the root, power of two communicator size and so on.
To allow for a rule base to be built using these, each parameter type is associ-
ated with a well known constant label that can be used during rule creation and
modification time.

To allow us to reason about and with these parameters we also defined a
number of standard expression operators, again each with a well known constant
name. These include: LT, LTEQ, GT, GTEQ and EQ, meaning Less Than,
Less Than and Equal, and so on. The values the operators compare parameters
against can be set at rule creation time and later modified. A special requirement
that we demonstrate below is that comparison values can be named and their
memory address made available via the MPI Attributes interface.

The rule block itself consists of upto seven parts, the first three being: the
standardized parameter, the expression operator and the expression value to
compare against. For each of the possible outcomes true or false, the rule must
specify one of two entities, either, another rule to evaluate or a terminating
function pointer and its additional argument block. In the case another rule is
specified, the system will simply evaluate it and continue on. If otherwise a func-
tion pointer is specified together with an argument block (containing segment
size, topology information such as fan-out/fan-in) the system will simply call the
[collective] function and pass its return code back to the MPI layer.

6.1 Overheads of the rule base

Using dynamic rules with multiple function pointer dereferencing and evalua-
tion of the common parameter block does potentially add some overhead to the
critical path of the MPI collective invocation. We build a small benchmark code
that exhaustively tested a small rule base by taking MPI parameters to a broad-
cast and invoking a dummy function. The benchmark kept count of both the



average depth and the total time for evaluating 180 thousand input parameters.
The benchmark was wrote in two parts, one that used the dynamic rule system
and the other that used a compiled if else statement block in the C language.
Both codes were compiled with the same compiler flags (-O). The results were
as follows for a 1.4GHz Pentium 4:

Static rules: 63.7 nSeconds
Dynamic rules: 125.7 nSeconds

These results were for an average depth of 5 rules or just over 12 nSeconds
per rule. Considering that efficient small message collectives on clusters are in
the order of tens of microseconds the extra overhead is probably insignificant.
If the user supplies a hardware assisted collective then they should probably
use a different mechanism to invoke it such a direct function pointer in the
communicator structure itself.

6.2 Feedback controlled New Switchable All2allv Algorithm

To test the dynamic rule base in a novel way we implemented a new variant
of the MPI ALLTOALL vector operation (MPI Alltoallv). The ALLTOALLV
operation allows different sized messages between each peer of nodes. This new
variant is a cross between a fully eager ALLTOALL implementation and a pair-
wise based approach. A fully eager approach makes sense for small messages
and small numbers of nodes. Pairwise is efficient on larger message sizes, but the
vector nature of ALLTOALLV means that it can potentially contain both very
large and very small messages.

At the beginning of the operation, each process checks the data sizes for each
transfer with its peers and if the data sizes are below a certain threshold, it sends
them immediately via a non blocking send operation (while conversely posting
any nonblocking receives for any incoming short messages). Any messages not
sent and received during the eager phase are exchanged during a standard pair-
wise communication pattern. At the end of the operation all outstanding re-
quests are waited on until complete. If the threshold is zero then the algorithm
is a pairwise algorithm, if the threshold is as big as the largest message between
peers then the algorithm becomes fully eager. Values of threshold in between
can reduce either total time to completion or contention within the network, but
modeling the optimal is difficult due to the non uniform data sizes possible.

To overcome the problems associated with choosing a fixed threshold we im-
plemented the threshold test within the dynamic rule system and exported the
thresholds address via the MPI attribute system. We then implemented a new
version of ALLTOALLV at the MPI profiling layer which attempted to tune the
underlying collective by testing different values of the threshold. This was per-
formed by using the best value of the threshold for n iterations and then testing
a single new value of the threshold. If this value produced a better time that
the previous values it would be kept. As each peer of the ALLTOALLV handles
different amounts of data it is impossible for each peer to decide locally which



value of the threshold we be kept and which will be rejected. Thus at each test
iteration we nominated the zero rank process to broadcast if the threshold is
kept or rejected. Figure [?] shows the time per iteration of an ALLTOALLV col-
lective with dynamic tuning of the eager / pairwise threshold. As can be seen,
the tuning system does actually make progress in improving the performance
of the collective during runtime. As can also be seen, the tuning system must
be capable of handling a noisy system as many of the techniques used to pro-
duce repeatable results during benchmarking cannot be enforced on a working
application.
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7 Conclusions and future work

The results presented in this paper show that the flexible control of the Open
MPI tuned collectives component do not effect communication performance, and
that the component is still competitive with other MPI implementations such as
LAM/MPI, FT-MPI and MPICH2. The component allows multiple varied and
concurrent methods for the user or system administrator to control selectively
the choice of backend collective algorithm and its parameters.

The dynamic rule base system adds even more capabilities in terms of runtime
control, which was demonstrated by real time tuning of a critical parameter in
a new ALLTOALLV algorithm. We are hoping to extend this work in a number
of ways. This includes adding more automated tools for file based rule genera-
tion (application targeted tuning) and using feedback from switch and network
infrastructure to dynamically control algorithm choices during runtime.
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