
PAPI 5: Measuring Power, Energy, and the Cloud

Vincent M. Weaver∗, Dan Terpstra†, Heike McCraw†, Matt Johnson†, Kiran Kasichayanula†, James Ralph†,
John Nelson†, Phil Mucci†, Tushar Mohan§, and Shirley Moore‡

∗Electrical and Computer Engineering, University of Maine
†Innovative Computing Lab, University of Tennessee

‡Computer and Computational Sciences, University of Texas at El Paso
§Minimal Metrics

I. INTRODUCTION

The PAPI library [1] was originally developed to provide
portable access to the hardware performance counters found
on a diverse collection of modern microprocessors. Rather
than learning and writing to a new performance infrastructure
each time code is moved to a new machine, measurement
code can be written to the PAPI API which abstracts away
the underlying interface.

Over time, other system components besides the processor
have gained performance interfaces (for example, GPUs and
network interfaces). PAPI was redesigned to have a component
architecture to allow modular access to these new sources of
performance data [2].

In addition to incremental changes in processor support, the
recent PAPI 5 release adds support for two emerging concerns
in the high-performance landscape: energy consumption and
cloud computing.

As processor densities climb, the thermal properties and
energy usage of high performance systems are becoming
increasingly important. We have extended the PAPI interface
to simultaneously monitor processor metrics, thermal sensors,
and power meters to provide clues for correlating algorithmic
activity with thermal response and energy consumption.

We have also extended PAPI to provide support for running
inside of Virtual Machines (VMs). This ongoing work will
enable developers to use PAPI to engage in performance
analysis in a virtualized cloud environment.

II. NEW FEATURES

The recent PAPI 5.0 and 5.1 releases have added many new
features over PAPI 4.4.

A. Improved CPU Support

PAPI 5 provides better support for Intel SandyBridge, Ivy
Bridge, Cedarview Atom, and Xeon Phi architectures. Support
has been added for Intel Offcore Response and Uncore Events.

PAPI now supports Blue Gene/Q (BG/Q), the third gen-
eration in the IBM Blue Gene line of massively parallel,
energy efficient supercomputers. The BG/Q predecessor, Blue
Gene/P, suffered from incompletely implemented hardware
performance monitoring tools. To address these limitations,
an industry/academic collaboration was established to extend
PAPI with five new components that allow hardware per-
formance counter monitoring of the 5D-Torus network, the

I/O system and the Compute Node Kernel in addition to the
processing cores on BG/Q.

B. New Interfaces

The previous limit of 16 components has been lifted,
allowing for a much richer collection of measurement options.
PAPI can now report results other than unsigned 64-bit integer,
such as signed integer, fixed point, and ratios. Support is also
included for reporting units, which becomes necessary with
events that report power and energy. A document is available
that describes all of the interface changes [3].

C. Power and Energy Components

Energy and power have become increasingly important
components of overall system behavior in high-performance
computing (HPC). Now that HPC machines have hundreds of
thousands of cores [4], the ability to reduce consumption by
just a few Watts per CPU quickly adds up to major power,
cooling, and monetary savings.

There are some limitations when measuring power and
energy using PAPI. Typically these readings are system-wide:
it is not possible to exactly map the results to the user’s code,
especially on multi-core systems.

1) Intel RAPL: Recent Intel SandyBridge chips include the
“Running Average Power Limit” (RAPL) interface. Internal
circuitry can estimate current energy usage based on a model
driven by hardware counters, temperature, and leakage models.
The results of this model are available to the user via a model
specific register (MSR), with an update frequency on the order
of milliseconds. Linux has no RAPL driver, so we must use
the “MSR driver” that exports MSR access to userspace. If the
MSR driver is given proper read-only permissions then PAPI
can access these registers without needing kernel support.

2) NVIDIA Management Library: Recent NVIDIA GPUs
can report power usage via the NVIDIA Management Library
(NVML) [5]. The nvmlDeviceGetPowerUsage() rou-
tine exports the current power; on Fermi C2075 GPUs it is
updated at 60Hz with milliwatt precision and ±5 Watt absolute
accuracy. PAPI can use this interface to report power for the
entire board, including GPU and memory.

3) Xeon Phi / MIC: The PAPI MIC power component
exposes instantaneous voltage and current data collected by
an onboard system management controller (SMC); the mea-
surements are from an analog sensor, not a model. The SMC
also provides an averaged total power utilization over two time
windows.



D. Virtualization

Cloud computing involves use of a hosted computational
environment that can provide elastic compute and storage
services on demand. Virtualization is a technology that allows
multiple virtual machines (VMs) to run on a single physical
machine and share its resources. Virtualization is increasingly
being used in cloud computing to provide economies of scale,
customized environments, fault isolation, and reliability.

PAPI 5 addresses various aspects of measuring perfor-
mance in the cloud.

1) Timing and Stealtime: PAPI aims to use the best and
most accurate timers exposed by each VMM to implement a
uniform timing interface that can be used across VMMs. This
timer standardization will allow the same timing code to be
used from within an application regardless of which native or
virtualized environment it is running on. Some VMMs support
the notion of virtualized time, for example called “apparent
time” by VMware [6], whereby the virtual machine can have
its own idea of time.

Most processors have a built-in hardware clock that allows
the operating system to measure real and process time. Real
time, also called elapsed or wall clock time, is the time
according to an external standard since some fixed point such
as the start of the life of a process. Process time is the amount
of the CPU time used by a process since it was created. Process
time is broken down into user CPU time (also called virtual
time), which is the amount of time spent executing in user
mode; and system CPU time, which is the amount of time
spent executing in kernel mode. Measurement of process time
can be useful for evaluating the performance of a program,
including on a per-process or per-thread basis.

In order to improve the accuracy of CPU time accounting
on virtual systems, the mechanism must be able to not only dis-
tinguish between real and virtual CPU time but also recognize
being in involuntary wait states. These wait states are referred
to as “steal time”. Linux KVM/Xen supports reporting steal
time, and we have written a PAPI component for reporting it.

Steal time is only reported system-wide, so it is not
possible to get fine-grained per-process results, thus mak-
ing it hard for PAPI to auto-adjust results returned by
PAPI_get_virt_usec(). Stealtime is only an issue if
a machine is over-subscribed with VMs, and in most HPC
situations only one task is running per node, so this might not
be a critical limitation.

2) I/O Performance: Variable I/O performance has been
found to significantly impact application performance in virtual
environments [7], [8], [9]. We have developed a PAPI com-
ponent (appio) for measuring IO performance at application
level in virtual environments. This component intercepts calls
to read, write, fread and fwrite and reports a variety of metrics
on the size and amount of I/O taking place.

3) VMware Component: The PAPI VMware component
exposes information provided from within VMware to users
running inside as a guest. Values are gathered using VMware’s
Guest SDK [10], as well as what VMware refers to as
“pseudo performance” counters [6]. VMware makes pseudo
performance counters available through an rdpmc instruction

to obtain fine-grained time from within the virtual space.
These pseudo-performance counters are not enabled by de-
fault; they must be enabled and an environment variable
(PAPI_VMWARE_PSEUDOPERFORMANCE) must be set be-
fore use.

4) Virtualized Processor Counters: The performance mon-
itoring unit (PMU) of a processor typically includes a set
of performance counter registers that count the frequency or
duration of specific processor events, a set of performance
event select registers used to specify the events that are tracked
by the performance counter registers, a hardware interrupt that
can be generated when a counter overflows, and a time stamp
counter (TSC) that can be used to count processor clock cycles.
On x86 hardware these interfaces are programmed via MSRs;
typically these require ring-0 (kernel) levels of permission.

In order to transparently use performance counters (and
PAPI) from within a VM the full MSR interface must be
trapped and emulated. Recently support for doing this was
added to KVM (in Linux 3.3) and Xen (Linux 3.5). Support
is still undergoing beta testing at VMware.

III. CONCLUSION

The PAPI library provides transparent access to new classes
of interfaces, including virtualized, power and energy mea-
surements. Existing programs that already support PAPI in-
strumentation for CPU performance measurements can quickly
be adapted to measure these new events with a simple PAPI
upgrade.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grants No. 0910899 and 1117058.
Additional support for this work was provided through a
Sponsored Academic Research Award from VMware, Inc.

REFERENCES

[1] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” International Journal of High Performance Computing Applica-
tions, vol. 14, no. 3, pp. 189–204, 2000.

[2] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with PAPI-C,” in 3rd Parallel Tools Workshop, 2009, pp.
157–173.

[3] V. Weaver, “New features in the PAPI 5.0 release,” University of
Tennessee, Tech. Rep., 2012. [Online]. Available: http://www.eece.
maine.edu/∼vweaver/papers/papi/papi v5 changes.pdf

[4] “Top 500 supercomputing sites,” http://www.top500.org/.
[5] NVML Reference Manual, NVIDIA, 2012.
[6] Timekeeping in VMware Virtual Machines, VMware, Inc., 2010.
[7] A. Nanos, G. Goumas, and N. Koziris, “Exploring i/o virtualization

data paths for MPI applications in a cluster of VMs: A networking per-
spective,” in Proc. 5th Workshop on Virtualization in High Performance
Cloud Computing, 2011.

[8] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware virtual
machine scheduling for I/O performance,” in Proc. of the ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments, 2009, pp. 101–110.

[9] D. Ongaro, A. Cox, and S. Rixner, “Scheduling I/O in virtual machine
monitors,” in Proc. of the 4th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, 2008, pp. 1–10.

[10] vSphere Guest SDK Documentation, VMware, Inc., 2011.


