Improving Scalability and Usability of Parallel Runtime Environments for High Availability and High Performance Systems

Thara Angskun

Advisor: Dr. Jack Dongarra
Committees: Dr. George Bosilca, Dr. Hairong Qi and Dr. Brad Vander Zanden
Dissertation Statement

- Analyze, understand and improve state of the art mechanisms for managing highly dynamic large-scale applications

- Use new scalable and fault-tolerant topologies combined with rerouting techniques to build parallel runtime environments, which are able to efficiently and reliably deliver sets of information to a large number of processes.
Contributions

- Communication framework (library)
 - MPI implementation independent
 - New logical topologies
 - Graph theoretical (properties) analysis
 - Scalability and Fault-tolerance
 - Fault-tolerant routing protocols
 - Formally specified and verified protocols
 - Performance and reliability analysis
Assumptions

- **External Directory Service**
 - Used in initialization and recovery steps

- **Failures**
 - Assume Fail-stop (rather than Byzantine)

- **Transmission channel**
 - Detect and recover from a transmission error
 - E.g. TCP, Reliable UDP
 - Consequence: never lose a message
Related Works

• Parallel RTE
 • Grid Middleware, SSI, Distributed OS, MPI RTE

• MPI RTE
 • MPD, Open RTE, HARNESS, LAM

• Existing topologies
 • Fully-Connected, Ring, Hypercube, 2D Torus, Hypertree, HiC etc.

• Graph theory
 • (Recursive) Circulant, Knodel, Kautz graphs

• Peer-to-Peer
 • CAN, Chord, SkipNet, Pastry, Tapestry

• Sensor / Ad-hoc
 • Gossiping techniques
Topology Requirements

- Scalable and fault-tolerant capabilities
- No number of node restriction

Complete K-ary Sibling Tree (CST)

Binomial Graph (BMG)
Complete K-ary Sibling Tree (CST)

- K is number of fanout ($k \geq 2$)
Complete K-ary Sibling Tree (CST)

- Self-recovery structure
 - Prevent network bisection

- Property analysis
 - Good scalability and fault-tolerance
Complete K-ary Sibling Tree (CST)

- Fault-tolerant routing protocol
 - Unicast (1 to 1), multicast (1 to m, $m<n$), broadcast (1 to n)
- Performance and reliability analysis
 - 50+ experimental evaluations
Complete K-ary Sibling Tree (CST)

- Potential Problems

“When I grow up, I want to be a root node.”
Binomial Graph (BMG)

- Undirected graph $G:=(V, E), |V|=n$ (any size)
 - Node $i\in\{0,1,2,\ldots,n-1\}$ has links to a set of nodes U
 - $U=\{i\pm1, i\pm2,\ldots, i\pm2^k \mid 2^k \leq n\}$ in a circular space
 - $U=\{(i+1)\mod n, (i+2)\mod n,\ldots, (i+2^k)\mod n \mid 2^k \leq n\}$ and
 - $\{(n+i-1)\mod n, (n+i-2)\mod n,\ldots, (n+i-2^k)\mod n \mid 2^k \leq n\}$
Binomial Graph (BMG)

- Merging all necessary links creates binomial tree from each node in the graph.

Broadcast messages from any node within $\lceil \log_2(n) \rceil$ steps
Theoretical Properties of BMG

- Degree δ (number of neighbors)

 \[
 \delta = \begin{cases}
 (2 \times \lfloor \log_2 n \rfloor) - 1 & \text{For } n = 2^k, \text{where } k \in \mathbb{N} \\
 (2 \times \lfloor \log_2 n \rfloor) - 2 & \text{For } n = 2^k + 2^j, \text{where } k, j \in \mathbb{N} \land k \neq j \\
 2 \times \lfloor \log_2 n \rfloor & \text{Otherwise}
 \end{cases}
 \]

- $|E| = (n/2) \times \delta$

- Regular graph

- Vertex symmetric
Theoretical Properties of BMG

- Diameter \((D)\)
 \[
 O\left(\left\lceil \frac{\log_2(n)}{2} \right\rceil \right)
 \]

- Average Distance \((\bar{d})\)
 \[
 \approx \frac{\log_2(n)}{3}
 \]
Theoretical Properties of BMG

- Cost Factor (ξ) – Degree VS Diameter

\[\xi = D \times \delta_{\text{max}} \]

\[\xi = D \times |E| \]
Theoretical Properties of BMG

- Message Traffic Density (ρ)

\[
\rho = \frac{\bar{d} \times |V|}{|E|}
\]

$\rho_{BMG} \approx \frac{1}{3}$
Fault-Tolerant Properties of BMG

- Node-Connectivity (κ)
- Link-Connectivity (λ)
- Optimally Connected
 - $\kappa = \lambda = \delta_{\text{min}}$
Fault-Tolerant Properties of BMG

- Fault-Diameter (F)

- Strongly Resilient
 - $F(G) \leq D(G) + \Phi$

- Weakly Resilient
 - $F(G) \leq D(G) \times \Phi$
 - $F(BMG) \leq D(BMG) + 2$
Two-Terminal Routing Algorithms

- Breadth-First Search $O(\delta^D)$
- Basic-Greedy algorithm $O(\delta)$
 - Send to neighbor that has ID closest to the $DestID$

- Estimate number of hops between Src and $Dest$
 - Both Clockwise and Counter-Clockwise
 - Bit Counting $O(1)$ [e.g., distance 7 (0111_2) -> 4, 2, 1]
 - Parallel Bit Counting
 - Lookup Table
Two-Terminal Routing Algorithms

- Estimate number of hops between Src and Dest
 - Consecutive Bit Elimination $O(\log_2(n))$
 - CW Distance 7 (0111_2) -> CW 8(1000_2), CCW 1(0001_2)
 - Scan binary from right to left [Skip bit-0]
 - Add value of least significant of cluster bits to both directions

 Example CW 110 (1101110_2) -> CW 110, CCW 0
 Add 2 (10_2) -> CW 112 (1110000_2), CCW 2(10_2)
 Add 16 (10000_2) -> CW 128 (10000000_2), CCW 18 (10010_2)

- Equivalence Class $O(l \times \log_2(n))$
 - Distance d is the same as $|d \pm (l \times n)|$
Two-Terminal Routing Algorithms

• Accuracy (for $n \leq 4096$)

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Overhead (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>BFS</td>
<td>00.00</td>
<td>00.00</td>
</tr>
<tr>
<td>Basic (Greedy)</td>
<td>05.55</td>
<td>11.38</td>
</tr>
<tr>
<td>Bit Count</td>
<td>25.13</td>
<td>36.23</td>
</tr>
<tr>
<td>Cons-Bit-Elimination</td>
<td>01.28</td>
<td>04.43</td>
</tr>
<tr>
<td>Equiv-Class (l=1)</td>
<td>00.62</td>
<td>02.47</td>
</tr>
<tr>
<td>Equiv-Class (l=2)</td>
<td>00.02</td>
<td>00.28</td>
</tr>
<tr>
<td>Equiv-Class (l=3)</td>
<td>7.07e-5</td>
<td>00.01</td>
</tr>
<tr>
<td>Equiv-Class (l=4)</td>
<td>00.00</td>
<td>00.00</td>
</tr>
</tbody>
</table>

• Performance

![Graph showing time (sec) vs. number of nodes for different algorithms]
Multicast (1 to m, $m < n$)

- Destinations are embedded in the header
 - Unlike IP multicast which requires join/leave group

- Based on two-terminal (unicast) routing
 - Messages can be split at an intermediate node
 - Split if the shortest path is in different directions
Broadcast (1 to \(n\)) / Gather (\(n\) to 1)

- Binomial spanning tree from source

- \(\lceil \log_2(n) \rceil\) steps
AllGather (n to n)

- **Ring** [$n-1$ steps]: At step s
 - Node i sends data of node $(i-s)$ to node $i+1$
 - Node i receives data of node $(i-s-1)$ from node $i-1$

- **Gather + Broadcast** [$2 \log_2(n)$ steps]

- **Bruck** [$\log_2(n)$ steps]: At step s
 - Node i sends data to node $i-2^s$
 - Node i receives data to node $i+2^s$
Barrier (Synchronization)

- **Double - Ring** $[2n \text{ steps}]$:
 - Node exits from barrier when it receives a token second time

- **Gather + Broadcast** $[2 \log_2(n) \text{ steps}]$

- **Bruck** $[\log_2(n) \text{ steps}]$:
 - At step s
 - Node i sends 0 byte message to node $i-2^s$
 - Node i receives 0 byte message to node $i+2^s$
Routing in Failure Circumstances

- Unicast / Multicast / Ring-based
 - Reroute with alternate path
 - Prevent loop with transit list
- Broadcast / Gather
 - Broadcast message is encapsulated in a multicast sent from parent to children of the failed node.
- Bruck
 - Require additional multicast to get missing data
Reliability Analysis

- BMG
Reliability Analysis

- BMG vs. CST
Self-Healing BMG

- Adaptive
- Naïve VS. Adaptive
Self-Healing BMG

- Dynamic Expansion

![3D graph showing the number of connections between number of nodes and number of added nodes. The graph compares 'Adaptive' and 'Naive' methods.]
Multiple BMG

- Wide Area Communication
 - Multi-home is a node belonging to two or more groups
 - Gateway is a gateway of connection between groups

UUID = GroupID + NodeID

Messages will be automatically forwarded within adjacent groups
Conclusion

• Communication framework (library)
 • MPI implementation independent
 • New logical topologies
 • Graph theoretical (properties) analysis
 • Scalability and Fault-tolerance
 • Fault-tolerant routing protocols
 • Formally specified and verified protocols
 • Performance and reliability analysis
Future Work

• Aware physical topology
 • Function cost associates with links (Weighted graph)

• Reliability simulation
 • Support more distributions, e.g., LogNormal

• Generalized BMG
 • Node i has links to \(\{i \pm 1, i \pm b, \ldots, i \pm b^k \mid b^k \leq n \} \)

• Integrate to MPI Implementation
 • BMG -> ORTE (Open Run-Time Environment)
 • RTST -> OPAL (Open Access Layer)