Uncertainty Analysis in Software Reliability Modeling by Bayesian Analysis and Maximum-Entropy Principle

Shaun (Yuan-Shun) Dai, Assistant Professor EECS and IIE depts, UTK
Outline

• Introduction
• Reliability Modeling & Uncertainty Problems
• Uncertainty Analysis by Maximal Entropy Principle and Bayesian Analysis
• Case Study
• Future Research
• Conclusion

Introduction

• Software Reliability Models
 – Parametric & Non-Parametric

• Uncertainty analysis
 – Uncertainty in Parameters (Random Variables)
 – Uncertainty in Model Outputs/Results
 – Variance, confidence interval, percentiles, bounds etc

• Bayesian Approach
 – Lack of failure data in software testing
 – Posterior=Priori * Likelihood of Observations

• Maximal Entropy Principle
 – Physical principle of Entropy
 – Priori (Expert’s Suggestions, Historical Data, Information, etc.)
Software Reliability Modeling

• MLE (Maximum Likelihood Estimate)
 – Test the component and record the failure times
 \[t_k \quad (k = 1, 2, \ldots, n) \]
 \[s_k = \sum_{i=1}^{k} t_i \]
 – Compute the joint density or likelihood function
 \[f_S(s_1, s_2, \ldots, s_n) = \exp\{-m(s_n)\} \cdot \prod_{i=1}^{n} \lambda(s_i) \]
 – Get parameters that maximize likelihood function

• Reliability model with multiple components
 – Markov model, Stochastic Petri Net, fault tree analysis, reliability block diagram, etc.
 – Function of parameters of those components
Uncertainty Problems

• Randomness
 – Estimators and Observations
 – Test procedures and strategies
 – Model Selection

• Error of Parameters Estimations
 – Lack of Failure Data
 – Noise

• Accumulations of Uncertainty
 – Multiple components (Modular Software, or System)
 – Multiple procedures (Hierarchical Modeling)
Bayesian Approach

Standard BA Steps:

1) The parameters modeling a component are denoted by \(\bar{a} = \{a_1, a_2, \ldots, a_m \} \). The mean value function of the model is denoted by \(m(t \mid \bar{a}) \) and the failure intensity function by \(\lambda(t \mid \bar{a}) \).

2) The prior joint distribution of the parameters is denoted by \(p(\bar{a}) \) which is unknown.

3) The component is tested and a total of \(n \) failures have been observed. Let \(s_k \) denote the time to the \(k \)-th failure \(k = 1, 2, \ldots, n \), and \(\bar{s} = \{s_1, s_2, \ldots, s_n \} \) that are conditionally independent. Then, given the prior distribution and observations, the posterior distribution can be obtained by

\[
p(\bar{a} \mid \bar{s}) \propto p(\bar{a}) \cdot p(\bar{s} \mid \bar{a})
\]

where

\[
p(\bar{s} \mid \bar{a}) = \exp \{-m(s_n \mid \bar{a})\} \cdot \prod_{i=1}^{n} \lambda(s_i \mid \bar{a})
\]
Maximum-Entropy Principle

- **Entropy**: measures the disorder, and always tends to the maximum

- **Entropy Function**:
 \[H(f) \equiv -\int_{D_y} f(y) \cdot \ln[f(y)] dy \]
 where \(Y \) be a random variable with pdf \(f \), defined on \(D_y \subset \mathbb{R} \)

- **Constraints**:
 \[
 \int_{D_y} f(y) \cdot g_r(y) dy = \bar{g}_r \quad (r=1,2,\ldots,m) \quad \text{(Prior Information and Knowledge)}
 \]
 \[
 \int_{D_y} f(y) dy = 1
 \]

- **MEP**: Maximize \(H(f) \) subject to the constraints
Extract Information from MEP

- **Discrete**

 Provided information on the mean values F_k of certain function $f_k(x)$

 $$\sum_{i=1}^{n} \Pr(x_i \mid I)f_k(x_i) = F_k \quad k = 1,\ldots,m$$

 From MEP, we can get the priori of parameters as

 $$\Pr(x_i \mid I) = \frac{1}{Z(\lambda_1,\ldots,\lambda_m)} \exp[\lambda_1 f_1(x_i) + \ldots + \lambda_m f_m(x_i)]$$

 where

 $$Z(\lambda_1,\ldots,\lambda_m) = \sum_{i=1}^{n} \exp[\lambda_1 f_1(x_i) + \ldots + \lambda_m f_m(x_i)]$$

- **Continuous**

 $$\int p(x) f_k(x) dx = F_k$$

 From MEP, we can get the priori of parameters as

 $$p(x) = \frac{1}{Z(\lambda_1,\lambda_2,\ldots,\lambda_m)} \exp[\lambda_1 f_1(x) + \ldots + \lambda_m f_m(x)]$$

 where

 $$Z(\lambda_1,\ldots,\lambda_m) = \int \exp[\lambda_1 f_1(x) + \ldots + \lambda_m f_m(x)] dx$$
Measures for Uncertainty

- Marginal density function
 \[p_i(a_i \mid \bar{s}) = \int \int \cdots \int p(\bar{a} \mid \bar{s}) \cdot d(a_1) \cdots d(a_{i-1})d(a_{i+1}) \cdots d(a_m) \]

- Mean value of corresponding parameter
 \[\hat{a}_i = E(a_i) = \int_{-\infty}^{+\infty} a_i \cdot p_i(a_i \mid \bar{s}) \cdot d(a_i) \]

- Variance of the estimated parameter
 \[\sigma^2(a_i) = \int_{-\infty}^{+\infty} (a_i - \hat{a}_i)^2 \cdot p_i(a_i \mid \bar{s}) \cdot d(a_i) \]

- Confidence interval
 - Highest Posterior Density (HPD)

Minimize \((up_i - low_i)\) Subject to \(\int_{low_i}^{up_i} p_i(a_i \mid \bar{s}) \cdot d(a_i) = \beta_i\)

That maximizes the integral of \(\int_{C_\beta} p(\bar{a} \mid \bar{s})d\bar{a}\) equal to \(\beta\)
Monte Carlo Simulation

• Modular Software or Complex System

Algorithm 1: Monte Carlo approach

begin
for all $j \in [1, J]$ do // J is the total number of the iteration
 for all $k \in [1, K]$ do // Generate the parameters for all the K components
 $P_k \leftarrow \text{SAMPLE}\left(p_k(\Lambda_k) \mid \bar{s}\right)$
 // The function of $\text{SAMPLE}\left(p_k(\Lambda_k) \mid \bar{s}\right)$ is to draw a sample of the parameters from the posterior pdf $p_k(\Lambda_k \mid \bar{s})$, and then put the value into the vector P_k.
 od
 $R_s[j] \leftarrow f(P_1, P_2, \ldots, P_K)$ // function $f(P_1, \ldots, P_K)$ computes system reliability
 od
end (*Algorithm 1*)
Case: Single-Module Software

- NHPP (Nonhomogeneous Poisson Process)
 - Goel-Okumoto (GO) model (50 data)
 \[m(t) = a[1 - \exp(-bt)] \]
 - From MEP, we get priori
 \[
p(a, b) \propto \frac{1}{2\pi\sigma_a \sigma_b} \exp\left(- \frac{(a - \mu_a)^2}{2\sigma_a^2} - \frac{(b - \mu_b)^2}{2\sigma_b^2}\right)
 \]
 - From BA,
 \[
p(a, b | \bar{s}) \propto p(a, b) \cdot p(\bar{s} | a, b)
 \]
 \[
 \propto \frac{1}{2\pi\sigma_a \sigma_b} \exp\left(- \frac{(a - \mu_a)^2}{2\sigma_a^2} - \frac{(b - \mu_b)^2}{2\sigma_b^2}\right) \cdot p(\bar{s} | a, b)
 \]
 \[
 \propto \frac{1}{2\pi\sigma_a \sigma_b} \exp\left(- \frac{(a - \mu_a)^2}{2\sigma_a^2} - \frac{(b - \mu_b)^2}{2\sigma_b^2}\right) \exp\left(- a\l[1 - \exp(-bs_{50})]\r]a^{-50} \cdot b^{-50} \exp(-b\sum_{i=1}^{50} s_i)\right)
 \]
 \[
 = 1.5032 \times 10^{81} a^{-50} b^{-50} \exp\left(- \frac{(a - 100)^2}{200} - \frac{(b - 0.001)^2}{2 \times 10^{-8}} - a[1 - \exp(-713.41b)] - 15431b\right)
 \]
Case: Single-Module Software

- Results of Uncertainty Analysis

Marginal posterior density function with respect to a.

Marginal posterior density function with respect to b.

Marginal posterior probability density function with respect to a'.

Marginal posterior probability density function with respect to b'.
Case: Single-Module Software

• Results of Uncertainty Analysis
Case Study: Modular Software

- **Markov Model: (Two parallel Modules)**

State 1 is down and the system is up in States 2 (one module works) and 3 (two modules work).

\[
\begin{align*}
P_2'(t) &= - (\lambda + \mu)P_2(t) + 2\lambda c P_3(t), \\
P_3'(t) &= \mu P_2(t) - 2\lambda P_3(t),
\end{align*}
\]

\[
R_s(t) = P_2(t) + P_3(t)
\]
Case Study: Modular Software

• Results of Uncertainty Analysis
Case Study: Complex System

- Grid Computing
Case Study: Complex System

- Grid: Results of Uncertainty Analysis
Conclusion

• Uncertainty in Software Reliability modeling
• MEP+BA
• MC simulation
• Case Studies (Single, Modular, Complex)
Q&A