Performance of s-step GMRES
to avoid communication on/between GPUs

Ichitaro Yamazaki
with Hartwig Anzt1, Stan Tomov1, Mark Hoemmen2, Jack Dongarra1

1University of Tennesse, Knoxville
2Sandia National Laboratories

International Parallel and Distributed Symposium (IPDPS)
Phoenix, Arizona, 05/02/2014
What is “communication”?

Inter-processor comm
between parallel processing units (CPUs and GPUs):

for example, we “explicitly” perform inter-comm
- using CUDA for CPU ↔ GPU
- using MPI for CPU ↔ CPU

Intra-processor comm
through local memory hierarchy (on GPU):

for example, we have different intra-comm
- using BLAS-3, BLAS-2 or BLAS-1
How do we measure “communication”?

communication cost = \# messages \cdot \text{latency} + \text{communication volume/bandwidth}.

- explicitly reduce inter-comm, while implicitly reduce intra-comm.
- reduce both message count and volume vs. reduce message count but increase volume and comp (i.e., reduce latency).

Why do we care about “communication”?

- gap between arithmetic and comm costs is increasing
 some comm are more expensive on some hardware

\[
\frac{\text{time}}{\text{flop}} \ll \frac{1}{\text{bandwidth}} \ll \text{latency}.
\]

- current compute-bound algorithm may become comm-bound on a next machine.
- avoiding “communication” may also
 - avoid “synchronization,” providing more “parallelism” or reducing “ideling” time
 - improve “energy efficiency” (less frequent comm)
- etc. etc.
What is our goal?

study effectiveness of CA techniques for Krylov iterative methods to solve

\[Ax = b, \]

where \(A \) is big, on GPUs.

- **direct methods** are robust and stable, but may be too expensive.
- **iterative methods** may be the only feasible alternative.
 - Krylov methods are a class of popular and flexible methods.
 - We focus on GMRES, popular for solving nonsymmetric system.
- **hybrid (direct/iterative) methods** may combine the strength of both.
 - preconditioner.
- **GPUs** are becoming popular for HPC.
 - on a node for this talk.

compare performance of GMRES and CA-GMRES on GPUs
Outline: CA-GMRES on multicores with multiple GPUs

- Algorithm and Implementation
- GPU Kernels
 - Matrix Powers Kernel
 - Orthogonalization Kernels
- Performance
- Final Remarks
Generalized Minimum RESidual (GMRES): from ‘linear algebra’ view

Krylov projection method for solving a nonsymmetric problem,

\[Ax = b. \]

1. generate a Krylov subspace

\[\mathcal{K}_j(A, q_1) = \text{span}(q_1, Aq_1, A^2q_1, \ldots, A^j q_1) \]

\[= \text{span}(q_1, q_2, q_3, \ldots, q_{j+1}) \]

- \(j \)-th step generates ortho-normal basis \(q_{j+1} \).

2. find “best” \(\hat{x} \) in the subspace (with minimum residual norm \(\| b - A\hat{x} \|_2 \))

- solution converges with non-increasing residual norm.
- \(\mathcal{K}_n(A, q_1) \) spans the whole space, where \(n \) is the dimension of \(A \).
- iteration is restarted using the “best” approximation.
Restarted GMRES on GPUs: from ‘algorithmic’ view

1. Generate Krylov Basis on GPUs: \(\sim O(m \cdot \text{nnz}(A) + m^2 n) \) flops.

 for \(j = 1, 2, \ldots, m \) do

 Sparse Matrix-Vector (\textit{SpMV}) Product:

 \[v_{j+1} := Av_j \]

 Orthonormalization (\textit{Orth}):

 \[q_{j+1} := v_{j+1} - Q_{1:j} Q_{1:j}^T v_{j+1} \]

 end for

2. Solve Projected Subsystem on CPUs: \(\sim O(m^2) \) flops.

 GMRES: least-square problem

 \(\rightarrow \) restart with “better” starting \(v_1 \).

Performance considerations:

- generating basis vectors dominates computational cost.

 - distribute \(A \) and \(Q \) in a 1D block row among GPUs (e.g., \(k \)-way graph vertex cut).

- both \textit{SpMV} and \textit{Orth} require “expensive” communication:

 - point-to-point/neighborhood for \textit{SpMV} (inter-GPU).
 - global all-reduces in \textit{Orth} (inter-GPU).
 - data movements between local memory hierarchy (intra-GPU).
“Communication-Avoiding” GMRES

Improve performance by avoiding some comm:

▶ replacing \(SpMV \) with

 ▶ Matrix Powers Kernel (\(MPK \)):

 apply matrix powers \(Av_j, A^2v_j, \ldots, A^sv_j \)

 by \(v_{j+k} := Av_{j+k-1} \) for \(k = 1, 2, \ldots, s \).

▶ replacing \(Orth \) with

 ▶ Block Orthogonalization (\(BOrth \)):

 orthogonalize \(V_{j+1:j+s} \) against \(Q_{1:j} \).

▶ Tall-Skinny QR (\(TSQR \)):

 orthogonalize \(V_{j+1:j+s} \) against each other.

→ generate \(s \) vectors “at once” to reduce communication.
Matrix Powers Kernel for a tridiagonal matrix

1. communicate required nonlocal elements for s-step between GPUs

2. apply s matrix powers with extra computation on shrinking overlap
 - local submatrix is expanded with s-level overlap

→ reduce inter-GPU latency by s (with redundant computation).
Matrix Powers Kernel for a general matrix

1. communicate required nonlocal elements for s-step between GPUs

2. apply s matrix powers with extra computation on shrinking overlap
 - local submatrix is expanded with s-level overlap

→ reduce inter-GPU latency by s (with redundant computation).
Matrix Powers Kernel Performance

Our MPK reduces inter-GPU latency but trades off

- additional memory to store “ghost boundary.”
- addition computation for SpMV with “ghost boundary.”
- potentially, increasing total inter-GPU communication volume.

- MPK performance with G3_Circuit -
TSQR Algorithms

Many ways to orthogonalize columns of V with each other:

- **Modified Gram-Schmidt** (with $O(s^2)$ reductions)
 - ortho each column against each column based on BLAS-1 \timesDOT and \timesAXPY

- **Classical Gram-Schmidt** (with $O(s)$ reductions)
 - ortho each column against prev columns based on BLAS-2 \timesGEMV

- **Cholesky (or SVD) QR** (with $O(1)$ reductions)
 - ortho all columns against prev columns based on BLAS-3 \timesGEMM, \timesTRSM

- **CAQR** (with $O(1)$ reductions)
 - ortho all columns against prev columns based on tree-reduction BLAS-1,2 \timesGEQR2

- trade-off exists between performance and accuracy
- BOOrth is based on MGS or CGS.
TSQR Implementations

Standard algorithms for TSQR: consider both inter, and intra-GPU communication using optimized BLAS kernels on each GPU.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(| I - Q^T Q |)</th>
<th># flops, GPU kernel</th>
<th># GPU-CPU comm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGS</td>
<td>(O(\epsilon \kappa))</td>
<td>2(ns^2), BLAS-1 xDOT</td>
<td>(O(s^2))</td>
</tr>
<tr>
<td>CGS</td>
<td>(O(\epsilon \kappa^2))</td>
<td>2(ns^2), BLAS-2 xGEMV</td>
<td>(O(s))</td>
</tr>
<tr>
<td>CholQR</td>
<td>(O(\epsilon \kappa^2))</td>
<td>2(ns^2), BLAS-3 xGEMM</td>
<td>(O(1))</td>
</tr>
<tr>
<td>SVQR</td>
<td>(O(\epsilon \kappa^2))</td>
<td>2(ns^2), BLAS-3 xGEMM</td>
<td>(O(1))</td>
</tr>
<tr>
<td>CAQR</td>
<td>(O(\epsilon))</td>
<td>4(ns^2), BLAS-1,2 xGEQR2</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

multiple dot–products with DGEMV (s=30)

\[V_{1:k-1} := \begin{bmatrix} r_{1:k-1, k} \\ V_{1:k-1}^T \end{bmatrix} \]
TSQR Implementations:

Standard algorithms for **TSQR**: consider both inter, and intra-GPU communication using optimized BLAS kernels on each GPU.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>FLOP Complexity</th>
<th>GPU Kernel</th>
<th>GPU-CPU Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGS</td>
<td>$O(\epsilon \kappa)$</td>
<td>$2ns^2$, BLAS-1 xDOT</td>
<td>$O(s^2)$</td>
</tr>
<tr>
<td>CGS</td>
<td>$O(\epsilon \kappa^2)$</td>
<td>$2ns^2$, BLAS-2 xGEMV</td>
<td>$O(s)$</td>
</tr>
<tr>
<td>CholQR</td>
<td>$O(\epsilon \kappa^2)$</td>
<td>$2ns^2$, BLAS-3 xGEMM</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>SVQR</td>
<td>$O(\epsilon \kappa^2)$</td>
<td>$2ns^2$, BLAS-3 xGEMM</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>CAQR</td>
<td>$O(\epsilon)$</td>
<td>$4ns^2$, BLAS-1,2 xGEQR2</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

![Graph showing block inner-products with DGEMM (s=30)](image)

CA-GMRES on GPUs
TSQR Performance (16-core SandyBridge with three M2090 Fermi, $s = 30$)

- performance depends more on intra-comm (BLAS performance) than on inter-comm.
- it scales well over 3 GPUs.
Experiment Setups for Performance of GMRES/CA-GMRES

- matrix equilbration for numerical stability
- reordering/partitioning for performance
 - local reordering if needed
- CGS for Ortho/BOrth, CholQR for TSQR
 - with reorthogonalization if needed.
- Newton basis to enhance MPK stability,
 \[v_{k+1} = \prod_{i=1}^{k} (A - \theta_i)q_1. \]
 - \(\theta_i \) is eigenvalues of \(H \) from first restart loop (GMRES)
- use ELLPACKT for SpMV
 (many sparse formats with different performance).
- parameter selection
 - pick “good” \(m \) for GMRES on GPU, and
 “stable” \(s \) for CA-GMERS.
- one node of Keeneland
 (2 \(\times \) 8 Intel SandyBridge + 3 NIVIA M2090).
CA-GMRES Performance

- obtained speedups of up to 2.0 (∼ iteration count).
 - **BOrth** and **TSQR** with speedups of up to 4.2 over **Orth**.
 - **MPK** got a speedup of 1.6, but could be slower than **SpMV**, especially with a relatively large s preferred by **Orth** (s = 15 ∼ 20).

- if comm is expensive, it may worth avoiding it.
 - speedups depends on hardware, implementation, matrix, etc.
 - newer GPU (e.g., Kepler) has a larger gap between comp and comm.
Final Remarks:

- we studied existing CA techniques on GPUs (please see our paper for references)
 - if comm is significant, it may worth to avoid it (requires careful implementations)

- we now have a framework to build on:
 - CA-GMRES with an adaptive step size:
 - adjust step size for MPK at runtime.
 - Mixed-precision CholQR (same comm but more comp)
 - improve overall stability by selective use of higher precision.
 - CA-GMRES on a hybrid CPU/GPU cluster
 - exhibit similar benefits on 120 GPUs.

Current Research:

- more GPU kernels: e.g.,
 - MPK: read A once, and read and write q_j once.
 - CAQR: batched QR.

- more effective usage of CPUs.
- hypergraph partitioning for MPK and CA-GMRES.
- CA-Preconditioner.
- inner-outer iteration.
- eigenvalue/SVD/low-rank approximation.
Thank you!!