Chaotic-Map Method for Detection and Diagnosis of CPU-GPU Hybrid Computing Systems

Nagi Rao
Oak Ridge National Laboratory

Discussion Presentation
June 5, 2015
Innovative Computing Laboratory
University of Tennessee, Knoxville

Research Sponsored by
ASCR Applied Mathematics Program, U.S. Department of Energy
Outline

1. Background
2. Chaotic map method
3. Diagnosis of hybrid systems
4. Codes and experimental results
Inherent Failures in Exascale Computing Systems

- Exascale computing systems are expected to have millions of processor cores and other components.
 - components with expected life-span of ten years
 - $\sim 100k$ hours/component = 10 failures/hour among 1M components
 - codes that run for a few hours likely experience failures of several components.
- Failure rates limit the effectiveness of current check-point/recovery methods:
 - Recovery times could be hours for Exascale systems
 - transient silent errors may lead to erroneous computations
- Failures will be integral part of Exascale computations – must be explicitly accounted
 - code outputs must be quantified with confidence estimates
 - specific to system failure profile
 - justifiable by measurements
Related Areas: Resilient Computations

- Foundational works:
 - von Neumann studied (in 1950s) mathematical aspects of achieving reliable computations over systems with unreliable components
 - subsequent reliability improvements in computing systems, perhaps, led to such studies not being extensively continued
 - Several fault detection problems in digital systems are known to be NP-hard
- Deployed systems: computing systems in satellites
 - deployed over past decades - enhanced with Software-Implemented Hardware Fault Tolerance (SIHFT) methods to counteract errors due to radiation in space environments.

But, Exascale computations present new challenges:
- sheer size and system complexity makes dynamic profiling of the failures and robustness complicated
- computation becomes inherently probabilistic:
 - for most applications, 100% guarantee of robustness against failures in not possible
 - requires confidence measures for code outputs – running to completion is not sufficient
Undecidability of Resilient Computations and Proofs

Addressed computational aspects of resilient computations under broad class of faults
Resilient computations present significant computational challenges:
 (a) asserting resiliency of computations is non-computable
 (b) mathematical proofs of resilience of algorithms are undecidable
These problems are not solvable in general form by computations and mathematical proofs alone: but,
• resilient computations can be designed for specific classes
• additional fault detection methods could make some problems computable

In general, these results motivate: deeper investigations of fault classes and resilient computations customized for them with complementary information

Reference: Resilience 2014 paper
Chaotic Poincare maps

Poincare Map: \(M : \mathbb{R}^d \rightarrow \mathbb{R}^d \)

\[X_{i+1} = M \left(X_i \right) \]

Trajectory

\[X_0, X_1, X_2, \ldots \]

Examples:

logistic map: \(X \in [0,1] \)

\[M_{L_a} (X) = aX (1 - X) \]

tent map: \(X \in [0,1] \)

\[M_T (X) = \begin{cases} 2X & \text{if } X \leq 1/2 \\ 2(1 - X) & \text{if } X > 1/2 \end{cases} \]

Hennon map

\[M_H (X, Y) = (a - X^2 + bY, X) \]

Simple computations generate seemingly complex trajectories
Chaotic maps amplify state errors and spread across bit-space

Chaotic trajectory: \(X_0, X_1, X_2, \ldots \) is chaotic if
(i) it is not asymptotically periodic, and
(ii) Lyapunov exponent is positive
\[
L_M = \ln \left| \frac{dM}{dX} \right| > 0
\]

Key Properties:
(i) Extreme sensitivity: small differences in states rapidly diverge
(ii) Wide Fourier spectrum: few iterates cover bit-space

\[
X_i \leftarrow X_i + \frac{X_i}{100}
\]

differences between two trajectories

one of the states corrupted at \(t=50 \)
Poincare maps for fault detection

Poincare maps computed in parallel at different computing units: fault at one will lead to quick divergence of the outputs, depending on:

- **Type of faults**: Wide range of faults in
 - arithmetic and logical operations
 - registers and memory
 but are limited to those in operations used by M(.)

- **Poincare map properties**: Computation of M(.)
 - sensitive to errors
 - in constituent operations, and
 - mechanisms used in storing and updating the states
 - rate of divergence and its detectability depends on the Lyapunov exponent
 - generally, larger Lyapunov exponent values lead to quicker divergence
 - for tent map, $L_M = \ln 2 > 0$ except at $X=1/2$

Side Note: Codes with known outputs are routinely used for diagnosis of computing systems – Poincare maps are among the least complex.
Chaotic-Identity Map

Poincare map amplifies errors in operations used in its own computation

Chaotic-Identity Map:
\[X_0 \leftarrow I_D(X_i) \]
\[X_{i+1} \leftarrow M(X_0) \]

Execution routed through:
- computing operations
- memory locations
- interconnect links
to capture errors in them

Output \(I_D(X_i) \) is identical to \(X_i \) if there are no faults

It catches errors in specified operations – instructions, sub-routines, libraries

Chaotic-Computing Map: Identity computations replaced by other operations
Summary: Proof-of-Principle Detection Codes

Initial codes developed and tested on these systems

i. Single-Host System Diagnosis
 • Multiple Cores: pthreads - **delivered to OLCF**
 • 4-core Intel Xeon 2.67GHz; 16-core 16-core AMD Opteron; 32-core Intel Xeon 2.7GHz; 48-core AMD Opteron 2.29GHz
 • GPU Accelerators: CUDA C - **delivered to OLCF**
 • Single-GPU: Quadro 600, Tesla T10, Tesla C1060, Tesla K20X
 • Multiple-GPU: 8 Tesla T10

ii. Multi-Host Hybrid Systems Diagnosis
 • Multi-host, mutli-cores system: MPI+pthreads
 • Multi-host, single GPU system: MPI+ CUDA C
 • Multi-host, multi-core, single GPU: MPI+pthreads+ CUDA C

Systems Used in Tests:

Lens:
77-node linux cluster: 16-core/node 2.3 GHz AMD Opteron; 32 nodes with NVIDIA Tesla C1060

Titan:
OLCF supercomputer: 18,688 nodes: 16-core/node AMD Opteron 22.2GHz; unconventional NVIDIA Kepler Tesla K20X

Chester:
“test” version of Titan: 95 nodes
Hybrid Computing System Architecture

- **node 1**
- **node 2**
- **node N**

interconnect

CPU

GPU

- **(1,1)**
- **(1,2)**
- **(1,B)**
- **(2,1)**
- **(2,2)**
- **(2,B)**
- **(i,j)**
- **(T,1)**
- **(T,2)**
- **(T,B)**

socket

core

GPU core

CPU core

socket

(block,thread)
Titan: Cray XK7

XK7 Compute Node Characteristics

- **AMD Opteron 6274**
 - 16 core processor @ 141 GF
- **Tesla K20x** @ 1311 GF
- **Host Memory**
 - 32GB
 - 1600 MHz DDR3
- **Tesla K20x Memory**
 - 6GB GDDR5
- **Gemini High Speed Interconnect**

System:

- 200 Cabinets
- 18,688 Nodes
- 27 PF
- 710 TB

Cabinet:

- 24 Boards
- 96 Nodes
- 139 TF
- 3.6 TB

Board:

- 4 Compute Nodes
- 5.8 TF
- 152 GB
Overall Detection Approach

Chaotic-Map Method:
• Compute chaotic maps in parallel on “all” nodes and paths
• Compute follow-on maps on “reliable” nodes

Implementations: system specific
• Multi-core systems: threads
• GPUs: CUDA C block-threads
• Multi-node CPU+GPU systems: threads+CUDA+MPI

Detection: “errors” amplified by chaotic maps:
• in-situ
• follow-on computations

Diagnosis: may require additional codes
Implementation: Single Nodes

Multi-Core Node:
- pthreads: chaotic map trajectory on every core

- AMD Opteron 6274
 - 16 cores
 - 141 GFLOPs peak

GPU Accelerator:
- CUDA C kernel: chaotic map threads on every block

- NVIDIA Tesla K20x
 - 14 Streaming Multiprocessors
 - 2,688 CUDA cores
 - 1.31 TFLOPs peak (DP)
 - 6 GB GDDR5 memory
 - HPL: >2.0 GFLOPs per Watt (Titan full system measured power)
Implementation: Hybrid Systems

Multi-Core: Pthreads:

CPU cores

GPU blocks

GPU: CUDA kernel

hybrid compute node

main core

launch

follow-on

compare

MPI launch

MPI gather
CPU Multi-Core Results Summary

All CPU chaotic-map output results match:
- Match to the bit on AMD Opteron and Intel cores
- Floating point operations are IEEE 754 compliant
GPU Computations:
Different GPU blocks of same GPU producing different answers in some cases:
 • Observed when integer and fractional variables are mixed on GPU blocks
 • Observed on multiple GPUs, and repeatable
 • Implications are not entirely understood – potentially destabilize certain non-linear computations

Example run: titan

I have no name!@nid06983:/tmp/work/nrao> .diag_gpu_titan
Device Name: Tesla K20X
[deviceProp.major.deviceProp.minor] = [3.5]
multi-processor count = 14
warp_size = 32
cudaGetDevice()=0

CPU: Number of cores detected=16

GPU: Number of threads=100; Number of blocks=50
chaotic map: x=0.200000; l=4.000000; n=10000

GPU: Chaotic Map
 block_x[0]= 0.682320 <-> 3F2EAC8E
 block_x[1]= 1.682320 <-> 3F2EAC8E
 block_x[2]= 2.682321 <-> 3F2EAC90
 block_x[3]= 3.682321 <-> 3F2EAC90
 block_x[13]=13.682321 <-> 3F2EAC90
 block_x[14]=14.682321 <-> 3F2EAC90
 block_x[15]=15.682321 <-> 3F2EAC90
 block_x[16]=16.682320 <-> 3F2EAC80
 block_x[17]=17.682320 <-> 3F2EAC80

Output: fractional part is Chaotic-map state
- not identical across the blocks of same GPU
- may “appear” same under C printf but different
GPU Computations: follow-on chaotic map trajectory

Example run: titan

I have no name!@nid06983:/tmp/work/nrao> ./diag_gpu_titan

GPU: Chaotic Map

<table>
<thead>
<tr>
<th>block_x[0]</th>
<th>Follow-on Chaotic Map</th>
<th>Follow-on linear Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.682320</td>
<td>0.682320 <-> 3F2EAC8E</td>
<td>0.682320 <-> 0.682320</td>
</tr>
<tr>
<td>1.682320</td>
<td>1.682320 <-> 3F2EAC8E</td>
<td>1.682320 <-> 1.682320</td>
</tr>
</tbody>
</table>

Follow-on Chaotic Map

|------------|

Follow-on linear Map

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.860477</td>
<td>0.860477</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

CPU:

n_iter:10000; x_0:0.200000 l:4.000000, x_n:0.682320
logistic_map:0.682320 <-> 0.860477
linear_map 0.682320 <-> 0.000016
x_n=3F2EAC8E

Follow-on chaotic maps diverge significantly
follow-on linear maps May "absorb" the differences
Operational “Artifacts” Discovered

Execution of diagnosis codes led to the discovery of “operational artifacts”

GPU-emulations and incorrect executions: code delays
• Unless explicitly tested for presence of GPUs, codes may be
 • executed in “emulated mode”: long execution times
 • incorrectly executed: incorrect results
• Resolved by explicitly checking for “physical” GPUs

Data transfers errors when MPI is used to launch CUDA kernels
• Outputs from certain blocks has zero fractional part:
 • Happens randomly but always the GPU block number matches the node number
• Implications are not entirely understood – potentially destabilize certain non-linear computations
Simulation Results

We simulate three types of errors:

i. ALU errors corrupt state by a multiplier
 • bit flip to 1 in ALU registers

ii. memory errors clamp state to a fixed value
 • stuck-at fault in RAM

iii. cross-connect errors modify state by a multiplier.
 • link transmission error

Nodes transition to a faulty mode with probability p, and once transitioned
 • errors type (i) and (ii) are permanent,
 • error type (iii) lasts only for a single time step
Simulation Results: No Faults

Case of no faults:
10-node pipeline of depth $k = 10$
• none are detected
• all chaotic time traces are identical across nodes

ground truth: no faults

trajectories
detector output: none

(a) no failures
Simulation Results

Stuck-at faults:
• full pipeline, spanning all 10 nodes
• trajectories disrupted by faulty nodes
• detection within one time step

ground truth: two stuck-at faults

detector output: two detected
Simulation Results

Pipeline of single chain
- executed by one node at time
- chain “sweeps” across nodes in time

Both faults are detected:
- detection delayed until the chain reaches faulty node

The total computational cost:
- 1/10 of the case (b)
- detection achieved, albeit delayed by few time steps

ground truth: two stuck-at faults
detector output: two detected
Simulation Results

Transient fault in interconnect payload lasted for one time unit.

Full pipeline spanning all nodes will detect such failure.

Pipeline of two chains with periodicity of 5 nodes is able to detect.

Ground truth: two transient faults.

Detector output: two detected.
Simulation System

Simulations on 48-core Linux workstation: 2.23GHz AMD Opteron processors

Computation on a single processor core and delay of 10 micro seconds to simulate the latency of interconnect.
- \(N = 500,000 \) nodes: runtimes under 2 seconds for
 - logistic map and a pair of reciprocal operations (5 operations for CI-map).

First-order approximation: for CI-map
- 10 operations each with 10 micro seconds execution time, and
- interconnect with 10 microsecond latency
pipeline execution time is 11 seconds for \(N=100,000 \)

All chains of \(\text{PCC}^2 \) -map are computed in parallel
- execution time scales linearly in \(N \)
- under 2 minutes for million computing nodes
HP Proliant 48-core Linux workstation: 2.23GHz AMD Opteron processors

Four sockets
8 Dyes
48 cores
Diagnosis output

HP Proliant 48-core Linux workstation: 2.23GHz AMD Opteron processors

System times:
user time: 9998.000000 useconds
kernel time : 23996.000000 useconds

Diagnosis Summary:
Core 0: output: 0.000000
Core 1: output: 0.492877
Core 2: output: 0.076975
Core 3: output: 0.932237
Core 4: output: 0.932237
Core 5: output: 0.932237
...
Core 41: output: 0.932237
Core 42: output: 0.932237
Core 43: output: 0.932237
Core 44: output: 0.932237
Core 45: output: 0.932237
Core 46: output: 0.932237
Core 47: output: 0.932237

simulated errors
no errors
System Profiling and Application Tracing

System Diagnosis and Profiling:
• executed at the beginning for an initial system profile
 - repeated periodically or triggered by failure events.
• typically, all system resources are devoted for initial profiling
• our method:
 - execute diagnosis modules customized to static and silent failures in
 processing nodes, memory units and interconnects
 - generate robustness estimates from outputs of diagnosis modules.

Application Tracing:
• diagnosis modules are strategically inserted into application codes
 - during compilation or preprocessing
• confidence measures are estimated for their outputs.

Basic idea: execution paths of these tracer codes “follow” along the same components as the application codes:
• processing nodes, memory elements and interconnect links,

Require “new” detection, profiling and tracing theory and algorithms:
Failure detection: schedule application around, replace nodes
Failure likelihood: set application fault tolerance, estimate confidence
Our Approach

Our approach: synthesis of methods from fault diagnosis, chaotic Poincare maps, and statistical estimation:

a) **Diagnosis methods:** identify computation errors due to component failures, in arithmetic and logic unit (ALU), memory and cross-connect, by strategically guiding the execution paths:
 i. system diagnosis pipelines
 ii. application traces

b) **Poincare maps** amplify effects of component failures making them quickly detectable,

c) **Statistical estimation** methods process data from execution traces to generate
 i. system robustness profiles
 ii. confidence estimates for applications
Confidence Estimates

Outputs of CI-maps are used to generate confidence measures for executions, particularly if no failures are detected

$$I_D(\cdot); M(\cdot) \text{ executed at rate } R_p$$
- once every $1/R_p$ seconds

P_{1/ R_p} probability of node failure during $1/R_p$ sec

Under statistical independence
probability of failure during N_p executions

$$1 - \left(1 - P_{1/ R_p}\right)^{N_p}$$

Confidence: $C(\alpha, N_p)$
that node failure probability is less than α

If no failures are detected in N_p executions

$$C(\alpha, N_p) = P\left\{ P_{1/ R_p} < \alpha \right\} > 1 - 2^{2\left[1-(1-\alpha)^{N_p}\right]^2} N_p$$
Confidence Estimate for Triplicated Application

Application triplicated with majority vote at each step:
• error-free under single faults
• makes error if there are two or more faults within “unit” time T_U

Application executed for duration T with application tracing detecting \hat{N}_T faults:
if two or more faults detected within “unit” time: check-point
if single are no fault detected in all unit times:
confidence that application is error-free

$$C(T, \alpha) = 1 - P\left\{N_{TU} > 1\right\} > 1 - \left(\frac{\hat{N}_T}{T} + \alpha\right)$$

with probability $\delta = 1 - ae^{-b\alpha^2 T^2}$

under statistically independent component failures

Qualitatively, confidence
• improves with lower number of faults detected
• improves with longer tracing period:
 • longer T means higher δ

Note: zero errors do not imply 100% confidence
Derivation of Confidence Estimate: Outline

By Hoeffding’s Inequality we have

\[P \left\{ \left| \left(1 - P_{1/R_p} \right)^{N_p} - \hat{P}_E \right| \right\} < 2e^{-2 \varepsilon^2 N_p} \]

\[P \{ P_{1/R_p} < \alpha \} > 1 - 2e^{-2 \left[1 - \alpha \right]^{N_p}^{2} N_p} \]

General Confidence Estimate:

If failures are detected in \(\hat{P}_E \) fraction of \(N_p \) executions

General confidence estimate:

\[C(\alpha, N_p) = P \{ P_{1/R_p} < \alpha \} > 1 - 2e^{-2 \left[1 - \alpha \right]^{N_p} - \hat{P}_E}^{2} N_p \]

Derivation: By Hoeffding’s Inequality we have

\[P \left\{ \left| \left(1 - P_{1/R_p} \right)^{N_p} - \hat{P}_E \right| \right\} < 2e^{-2 \varepsilon^2 N_p} \]

\[P \{ P_{1/R_p} - \hat{P}_E < \beta \} > 1 - 2e^{-2 \left[1 - \beta \right]^{N_p}^{2} N_p} \]
Confidence Estimate for Replicated Application: General Case

Application replicated $2\gamma + 1$ times with majority vote at component level:
- error-free under γ faults or fewer faults
- makes error if there are $\gamma + 1$ or more faults within “unit” time

Application executed for duration T with application tracing detecting \hat{N}_T faults
if two or more faults detected within “unit” time: check-point
if single are no fault detected in all unit times:
 confidence that application is error-free

$$C(T, \gamma, \epsilon) = 1 - P\{N_U > \gamma\} = 1 - \left(\frac{\hat{N}_T}{T\gamma} + \frac{\alpha}{\gamma}\right)$$

with probability $\delta = 1 - ae^{-baT^2}$

under statistical independence of component failures

Qualitatively, confidence
- improves with lower number of faults detected
- improves with longer tracing period
- also, improves with replication level
Xeon Phi and GPU Architectures

Xeon Phi core
- 1 to 1.3 GHz
- 1 SPU
 - 1 double op/cycle
 - In-order architecture
 - x86 + mic extensions
 - 4 hardware threads
- 1 VPU
 - 32 float op/cycle
 - 16 double op/cycle
 - Supports fused mult-add
 - 4 clock latency
 - 4 hardware threads

nVidia Kepler SMX
- 735 to 745 MHz
- 192 SP CUDA cores
 - 2 double op/cycle
 - Supports fused mult-add
- 64 DPUnits
 - 2 double op/cycle
 - Supports fused mult-add
- 32 SFU units
 - 1 double op/cycle
 - Supports transcendentals
Execution Path – Xeon Phi

- Different compiler switches exercise different parts of hardware
 - $ icc -mmic diag_multicore_light.c (default)
 Core 0: output: 0.940222 : 3E2F8EBE
 ... Core 227: output: 0.940222 : 3E2F8EBE
 - $ icc -mmic diag_multicore_light.c --no-vec
 Core 0: output: 0.940222 : 3E2F8EBE
 ... Core 227: output: 0.940222 : 3E2F8EBE
 - $ icc -mmic diag_multicore_light.c -fimf-precision=high
 Core 0: output: 0.940222 : 3E2F8EBE
 ... Core 227: output: 0.940222 : 3E2F8EBE
 - $ icc -mmic diag_multicore_light.c -fimf-arch-consistency=true
 Core 0: output: 0.936652 : 5E46ED57
 ... Core 227: output: 0.936652 : 5E46ED57
 - $ icc -mmic diag_multicore_light.c -fp-model strict
 Core 0: output: 0.932237 : 938210F1
 ... Core 227: output: 0.932237 : 938210F1
 - $ icc -mmic diag_multicore_light.c -fp-model precise -fp-model source
 Core 0: output: 0.932237 : 938210F1
 ... Core 227: output: 0.932237 : 938210F1

Agreement with xeon and opteron
Conclusions

Our approach
(i) utilizes light-weight computations based on chaotic and identity maps to
detect certain classes of errors in computations, and
(ii) implementation for diagnosis of multi-core processors, GPUs, and hybrid
systems
 - tested on three hybrid systems:
 • 4 multi-core processors
 • 4 GPUs

This approach is suitable for exascale systems:
 (a) low computational requirements
 (b) linear scaling of the execution time
both for system profiling and application tracing

Future Work:
 • These results are only a very first step
 • Implementations for high-performance machines and clusters
 • Incorporation of failure classes and application footprints
 • More analysis and simulations needed
 - understand and quantify classes of errors detected by a given set of
 Poincare and identity maps
References

Conference Papers

Whitepapers

• N. S. V. Rao, Confidence estimation for exascale computations, https://collab.mcs.anl.gov/display/examath/Submitted+Papers
Publications related to the topic

Fault diagnosis

Chaotic Maps

Statistical Estimation

Thank you