

About OpenACC

OpenACC is adirectives-based
programming model designed to
deliver performance and
portability for modern parallel
programs.

More Science, Less Programming

OpenACC

OpenACC Directives

Manage #pragma acc data copyin(a,b) copyout(c)
Data /{
Movement

#pragma acc parallel

. {
Initiate ,a””’}'#pragma acc loop gang vector

Earallell for (i = 0; i < n; ++1i) {
xecution c[i] = a[i] + b[i];
Optimize })

Loop

v OpenACC

Directives fFor Accelerators

e [ncremental
e Single source

° Interoperable
e Performance portable
e CPU, GPU, Manycore

OPENACC DIRECTIVES

a directive-based parallel programming model designed for
usability, performance, and portabllity

3 OF TOP 5 HPC 18% OF INCITE ON SUMMIT PLATFORMS SUPPORTED

NVIDIA GPU
X86 CPU
POWER CPU

Intersect3c69 5 u '-'-, "-, ' t ASRLIJ\;IWg:agU

Ll AMD GPU

OPENACC APPS OPENACC SLACK MEMBERS >200K DOWNLOADS

1724

00/236 1154
150” 692
10— 150 305 361 l I

— [|
SC15 SC16 SC17 SC18 ISC19 SC19 '—— EDITION E—
ISC17 SC17 ISC18 SC18 ISC19 SC19

39/87

OpenACC

GAUSSIAN 16

1

Using OpenACC allowad us to continue
development of our fundamental
algorithms and software capabilities
simultanecusly with the GPU-related
work. In the end, we could use the
same code base for SMP, cluster/
network and GPU paralleiism, PGI's
compilers were essential to the success
of our afforts.

b

ANSYS FLUENT

S We've effectively used
OpenACC for heterogeneous
computing in ANSYS Fluent
with impressive performance,
We're now applying this work
to more of our models and
new platforms.

For VASP, OpenACC is the way
forward for GPU acoelesation.
Performance is similar and in some
cases better than CUDA C, and
OpenACC dramatically decreases
GPU development and maintenance
efforts. We're excited to collaborate

with NVIDIA and PGI as an carly
adopter of CUDA Unified Memory.

SYNOPSYS

-

5 OpenACC made it practical to

develop for GPU-based hardware
while retaining a single source for

almost all the COSMO physics
code.

- =
{ -
T
/ 2 8
-
r ‘)‘. .
The CAAR project provided us with W - Porting our unsliuciured C++ Using OpenACC, we've GPU- CX ™ f& gur team has beﬁ:ﬂsvaluadng
T early acoess Lo Summil hardware and i - - T OpenACC as a pathway to
s o PO Compiler et 85 CFD solver FINE/Open to GPUs accelerated th.e Synopsxs TCAD & (> performance partability for the Model
i thesa were crtEAl b GUrScoess: using OpenACC would have Sentaurus Device EMW simulator for Prediction (MPAS) atmospheric

PGI's DpendGC support temains the
best available and is competitive with
e moee s ive programeming

madel approaches.

been impossible two or three
years ago, but OpenACC has
developed enough that we're

to speed up optical simulations of
image sensors. GPUs are key to
improving simulation throughput
in the design of advanced image

model. Using this approach on the
MPAS dynamical core, we have
achieved performance on a single
P100 GPU exuivalent 1o 2.7 dual
socketed Intel Xeon nodes on our new

naw getting some really gooq -

sensors. Cheyenne supercomputer. = B

VMD

Due to Amdahl’s law, we need to port

" more parts af aur code Lo the GPU I were

going to speed ft up. But the sheer
number of rautines pases & challenge.
DOpenace directives give us a low-cost
approach to getting at least same speed-

Up out of these second-tier routines. In and effort in learning to program e nor_je bty
many cases its completely sufficient GPUs earthquake disaster simulation
because with the cument algorithms, GIU code - wm

parformance is bandwidth-bound. - -

SANJEEVINI

In an acsdemic environment
malntenance and speadup of exiating
«codes is a tedious task. OpanACC
provides a great platform for

sclenteats 1o
both fasks wihout involving & lot of
efforts ar manpower In speeding up the
@nfire computationa! task.

results.

Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with
a minimum investment of time

IBM-CFD

- e

E

DRENALE can prove: 1o be 3 nandy 100l for
computaticnal engineers and researchers 10

00 of non-linear dynamics

15 boundary Incompresstie:

A0 mevte s0NOTS haus Bocn ¥
e e crveral seakeity

PWscf (Quantum
ESPRESSO)

| o=

CUDA Fortran gives us the full
performance potential of the CUDA

programming model and NVIDIA GPUs.
Whie leveraging the polentbaal of expiat

data movement, ISCUF KERNELS
dectives give iss productily and

souroe code manianabity. I's the best

of both words.

-

W canatvy (ovmy of fobyrs

GAMERA

-

With OpenACC and a compute
node based on NVIDIAs Tesla
P100 GPU, we achieved more
than a 14X speed up over a K

Adding OpenACC into MAS has given us
the ability to migrate medium-sized
simulations fmm a multi-node CPU
chinter toa & nulti-GPU server.
Thes implementation yielded a portable
single-source code for both CPU and
GPU runs. Future work will add
OpenACC to the remaining model
features, cnabling GPU-accelerated
realistic solar storm modeling. m

R EigeE

A Brief History

Compute on Self,
readonly, Array
Reductions, Lots of
Clarifications, Misc.
User Feedback

Whitepaper on deep
Basic parallelism, copy
structured data,
and async/wait
semantics

Attach/Detach
semantics

Serial Construct,
Attach/Detach

Unstructured Data
Lifetimes, Routines,

Reference Counting,
Profiling Interface,

ORNL asks CAPS,
Cray, & PGl to unify
efforts with the
help of NVIDIA

Atomic,

Clarifications &
Improvements

Additional
Improvements from
User Feedback

(Manual Deep
Copy), Misc. User
Feedback

Nov. June Nov. Oct. Apr. Nov. Nov.
2011 2013 2014 2015 2016 2017 2018

OpenACC

2011

Announcing OpenACC 3.0

Added C18, C++17, Fortran 2018 as supported base languages

Support for C++ lambdas

Improved multi-device support through direct memory copies and synchronization
Added zero-on-create to data clauses

Expanded list of directives that support the “if” clause

Lots of clarifications and clean-up

OpenACC

Update Base Languages

Welcome to the new Millennium

= OpenACC 2.7 supports C99, C++98, and
Fortran 2003, it's time to catch up

= C, C++, & Fortran all now have native support
for parallelism, where do directives fit with this?

= Updating the base languages was a necessary
step in being able to interoperate with native
parallelism

’ “
5
J—*

OpenACC

template <typename Execution Policy, typename BODY>
double bench forall (int s, int e, BODY body) {

C++ L bd StartTimer ();
al Il a,S if (is_same<Execution Policy, Serial> :: value) {

i . for (int 1 = s; 1 < e; ++1i)
Motivation body (i);
} else if (is_same<Execution Policy, OpenACC> :: value) {
. . # llel 1
= Lambdas provide a simple way to o R L
declare an anonymous function body (17 , | |
. . } else if (is same<Execution Policy, OpenACC multicore> ::
close to where it will be used. value) | - - -
#fpragma acc parallel loop self
N - for (int 1 = s; 1 < e; ++1)
= Lambdas may be inline or captured body (1)
for reuse)

return EndTimer ();

. . }
= An increasingly common C++

pattern is to create execution using T = double;

void do bench daxpy (int N, T *a, T *b, Tx) {

policies according to how the code .uto daxpy = [=](int i) /* Capture-by-value */
should execute { b[i] += a[i] * x; };

double time = bench forall<Serial> (0, N, daxpy):

= The lambda is reused according tO double cputime = bench forall<OpenACC multicore>(0, N, daxpy);

: : double gputime = bench forall<OpenACC> (0, N, daxpy):
the exeCUtlon pO“Cy printf ("OpenACC Multicore Speedup %$f \n", time / cputime);

printf ("OpenACC GPU Speedup %f \n", time / gputime);
}
OpenACC

Lambda expression

Possible to use lambda in OpenACC region?

Input code with lambda

void saxpy(int N, float * a, float * b, float x) {

/* Create a lambda object with Capture-by-Value */
auto lsaxpy = [=](int i) { b[i] += a[i] * x; };

/* Use it as loop body */

#pragma acc parallel loop

for (int 1 = @; i < N; ++i)
1saxpy(i);

\ 4

Conceptually generated code

void saxpy(int N, float * a, float * b, float x) {

class __lambda_7_17 {
private:
float *b, *a, x;
public:
inline /*constexpr */ void operator()(int i) const {
b[i] += a[i] * x;
}
__lambda_7_17(float * _b, float * _a, float _x)
) :b{ b} ,a{ _a}, x{ x}{}

/* Create lambda object */
__lambda_7_17 lsaxpy = _ lambda 7 _17{ b, a, x };

for (int i = @; i < N; ++i)
1saxpy.operator()(i);

OpenACC

lambdas in openacc

Two major challenges for OpenACC

1. The operator() function

- Fact: There is no associated symbol for operator() function.

* Problem: User cannot put acc routine

- Solution: Lambdas, including operator, are implicitly declared routine seq
2. Variables that are used in the lambda body
- Fact: Captured variables become struct member (struct members must be attached)

* Problem: User cannot attach them explicitly since lambda members are not visible

« Solution: Captured variables given implicit data clauses according to type
OpenACC

Multi-device Improvements

Synchronous & Asynchronous D2D copies without updating host

= OpenACC 3.0 enables direct device-to-device copies

OpenACC 2.7
// Indirect Copy A from Device 0 to Device 1

// Set the current device to O
#pragma acc set device (0)

// Update the host copy of A
#pragma acc update self (A[:N])
// Set the current device to 1
#pragma acc set device(l)

// Update the device 1 copy of A
#pragma acc update device(A[:N])

This results in 2 PCle transfers, blocking the host twice.

*directives-based version still being designed

OpenACC 3.0
// Direct Copy A from Device 0 to Device 1

// Set the current device to 0

#pragma acc set device (0)

// Get device 0’s pointer

float *srcA = acc_deviceptr(a);

// Set the current device to 1

#pragma acc set device(1l)

// Get device 1’s pointer

float *dstA = acc_deviceptr(a);

// Update the device 1 copy of A
acc_memcpy d2d(dstA, srcA, numBytes, 1, 0);

This results in 1 PCle/NVLINK transfer, blocking the host

once (maybe). OpenACe

Multi-device Improvements

Direct synchronization between devices

= OpenACC 3.0 enables direct device-to-device synchronization

OpenACC 2.7 OpenACC 3.0

// Host-based wait on devices 0 & 1 // Direct waiting across devices w/o blocking
// Set the current device to 0 // Set the current device to 1

#pragma acc set device (0) #pragma acc set device (1)

// Wait on device 0’'s queue 0 // Asynchronously have queue 100 on device 1
#pragma acc wait(0) // wait on queue 0 of device 0

// Set the current device to 1 #pragma acc wait(devnum:0,queues:0) async(100)

#pragma acc set device(l)

// Wait on device 1’s queue 100

#pragma acc wait (100)

Thi Its in blocki he h . Work in queue 100 of device 1 will depend on queue 0 on
Is results in blocking the host twice. device 0 without blocking the host.

OpenACC

Additional Uses for If

One motivating example

= Motivating example came from a sweep algorithm
Creates a single point of entry so all async queues fork from 0.

OpenACC 2.7

if (wavefront == 0 && octant>0)

{

// Create single entry to graph on O
#pragma acc wait(0) async(octant)

14

}

OpenACC3.0

// No Need for additional empty if
#pragma acc wait(0) async(octant) if (wavefront==0)

OpenACC

Zero Modifier

Zero device arrays upon creation

= Developers can specify arrays to be zeroed on creation without extra kernels or

memory transfers.
OpenACC 2.7

!Sacc data create(a)
!Sacc kernels
A(:) =0

. Do stuff
!Sacc end kernels
!Sacc end data

float* a = calloc (N, sizeof(float));
#pragma acc data copyin(a[:N])

{
. Do stuff

i.

Both cases result in either an extra kernel or data transfer

OpenACC 3.0

float* a = calloc (N, sizeof(float));
#fpragma acc data create(zero:a[:N])

{
. Do stuff

i.

The memory is initialized to zero by whatever means the
device supports

OpenACC

The Future of Parallel Programming

Standard Languages | Directives | Specialized Languages

std::for_each_n(POL, idx(©), n,
[&] (Index_t 1) {
y[i] += a*x[i];

});

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)
enddo

Drive Base Languages to Better Augment Base Languages with
Support Parallelism Directives

#pragma acc data copy(x,y) {

std::for_each_n(POL, idx(@), n,
[&] (Index_t i) {
y[i] += a*x[1i];

})s

__global
void saxpy(int n, float a,
float *x, float *y) {
int i = blockIdx.x*blockDim.x +
threadIdx.x;
if (i < n) y[i] += a*x[i];
}

int main(void) {

cudaMemcpy (d x, x, ...);
cudaMemcpy(d v, y, ...)’

saxpy<<< (N+255) /256,256>>>(...) ;

cudaMemcpy (y, d y, ...);

Maximize Performance with

Specialized Languages &
Intrinsics

OpenACC

OpenACC's Future in a Parallel World

Do directives still matter?

We cannot assume that legacy codes will rush to new language features.

New developments may need new features, but it's OK if they don't.

Interoperability and composability are critical

The base languages provide a portable parallelism, but directives may still provide
device-specific optimization paths.

OpenACC

3 Swim Lanes

Different Users with Different Needs

#pragma acc data copy(x,y) {

#pragma acc parallel loop

for (int i=0; i<N; ++i) {
y[i] += a*x[i];

b

Traditional/Legacy OpenACC
Directives for Parallelism & Data Movement,
including Deep Copy

// #pragma acc data copy(x,y) {

#pragma acc parallel loop

for (int i=0; i<N; ++i) {
y[i]l += a*x[i];

b

// }

Unified Memory OpenACC
Directives for parallelism, Unified Memory for
Data, Locality Rules

#pragma acc data copy(x,y) {

std::for each n(POL, idx(0), n,
[&] (Index t i) {
y[i] += a*x[i];
}) s

Parallel Languages & OpenACC
Base languages provide parallelism, OpenACC
handles data movement, Locality still Rules.

My OpenACC Wishlist

Defined behavior with Fortran "do concurrent’, "block’, and co-arrays.

Defined behavior with C++ parallelism

Modernized C++ interface (attributes, namespace, function overloading)

Directives to help with data layout transformations

OpenACC

