
Jeff Larkin <jlarkin@nvidia.com>,

Sr. DevTech SW Engineer, NVIDIA

To OpenACC 3.0, and Beyond!

Jeff Larkin <jlarkin@nvidia.com>,

OpenACC Technical Committee Chair

To OpenACC 3.0, and Beyond!

About OpenACC

More Science, Less Programming

OpenACC is a directives-based

programming model designed to

deliver performance and

portability for modern parallel

programs.

OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel
{
#pragma acc loop gang vector

for (i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
...

}
}
...

}

CPU, GPU, Manycore

Performance portable

Interoperable

Single source

Incremental

39
87 107

150
200 236

SC15 SC16 SC17 SC18 ISC19 SC19

OPENACC DIRECTIVES

a directive-based parallel programming model designed for

usability, performance, and portability

3 OF TOP 5 HPC 18% OF INCITE ON SUMMIT PLATFORMS SUPPORTED

OPENACC APPS >200K DOWNLOADS

NVIDIA GPU
X86 CPU

POWER CPU
Sunway

ARM CPU
AMD GPU

OPENACC SLACK MEMBERS

150 305 361
692

1154
1724

ISC17 SC17 ISC18 SC18 ISC19 SC19

A Brief History

2011

Incorporation

ORNL asks CAPS,
Cray, & PGI to unify
efforts with the
help of NVIDIA

Nov.
2011

OpenACC 1.0

Basic parallelism,
structured data,
and async/wait
semantics

Nov.
2014

Deep Copy TR

Whitepaper on deep
copy

June
2013

OpenACC 2.0

Unstructured Data
Lifetimes, Routines,
Atomic,
Clarifications &
Improvements

Oct.
2015

OpenACC 2.5

Reference Counting,
Profiling Interface,
Additional
Improvements from
User Feedback

Apr.
2016

New Deep
Copy TR

Attach/Detach
semantics

Nov.
2017

OpenACC 2.6

Serial Construct,
Attach/Detach
(Manual Deep
Copy), Misc. User
Feedback

Nov.
2018

OpenACC 2.7

Compute on Self,
readonly, Array
Reductions, Lots of
Clarifications, Misc.
User Feedback

Announcing OpenACC 3.0

Added C18, C++17, Fortran 2018 as supported base languages

Support for C++ lambdas

Improved multi-device support through direct memory copies and synchronization

Added zero-on-create to data clauses

Expanded list of directives that support the “if” clause

Lots of clarifications and clean-up

Update Base Languages

▪ OpenACC 2.7 supports C99, C++98, and
Fortran 2003, it’s time to catch up

▪ C, C++, & Fortran all now have native support
for parallelism, where do directives fit with this?

▪ Updating the base languages was a necessary
step in being able to interoperate with native
parallelism

Welcome to the new Millennium

This is heavy Doc!

C++ Lambdas

template <typename Execution_Policy, typename BODY>

double bench_forall (int s, int e, BODY body) {

StartTimer ();

if (is_same<Execution_Policy, Serial> :: value) {

for (int i = s; i < e; ++i)

body (i);

} else if (is_same<Execution_Policy, OpenACC> :: value) {

#pragma acc parallel loop

for (int i = s; i < e; ++i)

body (i);

} else if (is_same<Execution_Policy, OpenACC_multicore> ::

value) {

#pragma acc parallel loop self

for (int i = s; i < e; ++i)

body (i);

}

return EndTimer ();

}

using T = double;

void do_bench_daxpy (int N, T *a, T *b, Tx) {

auto daxpy = [=](int i) /* Capture-by-Value */

{ b[i] += a[i] * x; };

double time = bench_forall<Serial>(0, N, daxpy);

double cputime = bench_forall<OpenACC_multicore>(0, N, daxpy);

double gputime = bench_forall<OpenACC>(0, N, daxpy);

printf ("OpenACC Multicore Speedup %f \n", time / cputime);

printf ("OpenACC GPU Speedup %f \n", time / gputime);

}

Motivation

▪ Lambdas provide a simple way to
declare an anonymous function
close to where it will be used.

▪ Lambdas may be inline or captured
for reuse

▪ An increasingly common C++
pattern is to create execution
policies according to how the code
should execute

▪ The lambda is reused according to
the execution policy

Lambda expression
Possible to use lambda in OpenACC region?

void saxpy(int N, float * a, float * b, float x) {

/* Create a lambda object with Capture-by-Value */
auto lsaxpy = [=](int i) { b[i] += a[i] * x; };

/* Use it as loop body */
#pragma acc parallel loop
for (int i = 0; i < N; ++i)

lsaxpy(i);
}

void saxpy(int N, float * a, float * b, float x) {
class __lambda_7_17 {
private:
float *b, *a, x;

public:
inline /*constexpr */ void operator()(int i) const {

b[i] += a[i] * x;
}
__lambda_7_17(float * _b, float * _a, float _x)

: b{ _b } , a{ _a } , x{ _x } {}
};

/* Create lambda object */
__lambda_7_17 lsaxpy = __lambda_7_17{ b, a, x };

for (int i = 0; i < N; ++i)
lsaxpy.operator()(i);

}

Input code with lambda Conceptually generated code

lambdas in openacc

1. The operator() function

• Fact: There is no associated symbol for operator() function.

• Problem: User cannot put acc routine

• Solution: Lambdas, including operator, are implicitly declared routine seq

2. Variables that are used in the lambda body

• Fact: Captured variables become struct member (struct members must be attached)

• Problem: User cannot attach them explicitly since lambda members are not visible

• Solution: Captured variables given implicit data clauses according to type

Two major challenges for OpenACC

Multi-device Improvements

▪ OpenACC 3.0 enables direct device-to-device copies

Synchronous & Asynchronous D2D copies without updating host

OpenACC 2.7

// Indirect Copy A from Device 0 to Device 1

// Set the current device to 0

#pragma acc set device(0)

// Update the host copy of A

#pragma acc update self(A[:N])

// Set the current device to 1

#pragma acc set device(1)

// Update the device 1 copy of A

#pragma acc update device(A[:N])

This results in 2 PCIe transfers, blocking the host twice.

OpenACC 3.0

// Direct Copy A from Device 0 to Device 1

// Set the current device to 0

#pragma acc set device(0)

// Get device 0’s pointer

float *srcA = acc_deviceptr(A);

// Set the current device to 1

#pragma acc set device(1)

// Get device 1’s pointer

float *dstA = acc_deviceptr(A);

// Update the device 1 copy of A

acc_memcpy_d2d(dstA, srcA, numBytes, 1, 0);

This results in 1 PCIe/NVLINK transfer, blocking the host
once (maybe).*directives-based version still being designed

Multi-device Improvements

▪ OpenACC 3.0 enables direct device-to-device synchronization

Direct synchronization between devices

OpenACC 2.7

// Host-based wait on devices 0 & 1

// Set the current device to 0

#pragma acc set device(0)

// Wait on device 0’s queue 0

#pragma acc wait(0)

// Set the current device to 1

#pragma acc set device(1)

// Wait on device 1’s queue 100

#pragma acc wait(100)

This results in blocking the host twice.

OpenACC 3.0

// Direct waiting across devices w/o blocking

// Set the current device to 1

#pragma acc set device(1)

// Asynchronously have queue 100 on device 1

// wait on queue 0 of device 0

#pragma acc wait(devnum:0,queues:0) async(100)

Work in queue 100 of device 1 will depend on queue 0 on
device 0 without blocking the host.

Additional Uses for If

▪ Motivating example came from a sweep algorithm

One motivating example

Creates a single point of entry so all async queues fork from 0.

OpenACC 2.7

if (wavefront == 0 && octant>0)

{

// Create single entry to graph on 0

#pragma acc wait(0) async(octant)

;

}

OpenACC 3.0

// No Need for additional empty if

#pragma acc wait(0) async(octant) if(wavefront==0)

0 1 2 3

Zero Modifier

▪ Developers can specify arrays to be zeroed on creation without extra kernels or
memory transfers.

Zero device arrays upon creation

OpenACC 2.7

!$acc data create(a)

!$acc kernels

A(:) = 0

... Do stuff

!$acc end kernels

!$acc end data

float* a = calloc(N, sizeof(float));

#pragma acc data copyin(a[:N])

{

... Do stuff

}

Both cases result in either an extra kernel or data transfer

OpenACC 3.0

float* a = calloc(N, sizeof(float));

#pragma acc data create(zero:a[:N])

{

... Do stuff

}

The memory is initialized to zero by whatever means the
device supports

The Future of Parallel Programming
Standard Languages | Directives | Specialized Languages

Maximize Performance with

Specialized Languages &

Intrinsics

Drive Base Languages to Better

Support Parallelism

Augment Base Languages with
Directives

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

#pragma acc data copy(x,y) {

...

std::for_each_n(POL, idx(0), n,
[&](Index_t i){

y[i] += a*x[i];
});

...

}

__global__

void saxpy(int n, float a,

float *x, float *y) {

int i = blockIdx.x*blockDim.x +

threadIdx.x;

if (i < n) y[i] += a*x[i];

}

int main(void) {

...

cudaMemcpy(d_x, x, ...);

cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...);

cudaMemcpy(y, d_y, ...);

std::for_each_n(POL, idx(0), n,
[&](Index_t i){

y[i] += a*x[i];
});

OpenACC’s Future in a Parallel World

▪ We cannot assume that legacy codes will rush to new language features.

▪ New developments may need new features, but it’s OK if they don’t.

▪ Interoperability and composability are critical

▪ The base languages provide a portable parallelism, but directives may still provide
device-specific optimization paths.

Do directives still matter?

#pragma acc data copy(x,y) {

...

#pragma acc parallel loop

for(int i=0; i<N; ++i) {

y[i] += a*x[i];

});

...

}

// #pragma acc data copy(x,y) {

...

#pragma acc parallel loop

for(int i=0; i<N; ++i) {

y[i] += a*x[i];

});

...

// }

#pragma acc data copy(x,y) {

...

std::for_each_n(POL, idx(0), n,

[&](Index_t i){

y[i] += a*x[i];

});

...

}

3 Swim Lanes
Different Users with Different Needs

Traditional/Legacy OpenACC
Directives for Parallelism & Data Movement,

including Deep Copy

Unified Memory OpenACC
Directives for parallelism, Unified Memory for

Data, Locality Rules

Parallel Languages & OpenACC
Base languages provide parallelism, OpenACC
handles data movement, Locality still Rules.

My OpenACC Wishlist

▪ Defined behavior with Fortran `do concurrent`, `block`, and co-arrays.

▪ Defined behavior with C++ parallelism

▪ Modernized C++ interface (attributes, namespace, function overloading)

▪ Directives to help with data layout transformations

