org.netlib.blas
Class Ssyr2k

java.lang.Object
  extended by org.netlib.blas.Ssyr2k

public class Ssyr2k
extends java.lang.Object

Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * SSYR2K performs one of the symmetric rank 2k operations * * C := alpha*A*B' + alpha*B*A' + beta*C, * * or * * C := alpha*A'*B + alpha*B'*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A and B are n by k matrices in the first case and k by n * matrices in the second case. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + * beta*C. * * TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + * beta*C. * * TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + * beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrices A and B, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrices A and B. K must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, kb ), where kb is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array B must contain the matrix B, otherwise * the leading k by n part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDB must be at least max( 1, n ), otherwise LDB must * be at least max( 1, k ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions ..


Constructor Summary
Ssyr2k()
           
 
Method Summary
static void ssyr2k(java.lang.String uplo, java.lang.String trans, int n, int k, float alpha, float[] a, int _a_offset, int lda, float[] b, int _b_offset, int ldb, float beta, float[] c, int _c_offset, int Ldc)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Ssyr2k

public Ssyr2k()
Method Detail

ssyr2k

public static void ssyr2k(java.lang.String uplo,
                          java.lang.String trans,
                          int n,
                          int k,
                          float alpha,
                          float[] a,
                          int _a_offset,
                          int lda,
                          float[] b,
                          int _b_offset,
                          int ldb,
                          float beta,
                          float[] c,
                          int _c_offset,
                          int Ldc)