##
org.netlib.lapack

Class DLABAD

java.lang.Object
**org.netlib.lapack.DLABAD**

public class **DLABAD**

- extends java.lang.Object

**DLABAD** is a simplified interface to the JLAPACK routine **dlabad**.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines. Using this interface also allows you
to omit offset and leading dimension arguments. However, because
of these conversions, these routines will be slower than the low
level ones. Following is the description from the original Fortran
source. Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* DLABAD takes as input the values computed by DLAMCH for underflow and
* overflow, and returns the square root of each of these values if the
* log of LARGE is sufficiently large. This subroutine is intended to
* identify machines with a large exponent range, such as the Crays, and
* redefine the underflow and overflow limits to be the square roots of
* the values computed by DLAMCH. This subroutine is needed because
* DLAMCH does not compensate for poor arithmetic in the upper half of
* the exponent range, as is found on a Cray.
*
* Arguments
* =========
*
* SMALL (input/output) DOUBLE PRECISION
* On entry, the underflow threshold as computed by DLAMCH.
* On exit, if LOG10(LARGE) is sufficiently large, the square
* root of SMALL, otherwise unchanged.
*
* LARGE (input/output) DOUBLE PRECISION
* On entry, the overflow threshold as computed by DLAMCH.
* On exit, if LOG10(LARGE) is sufficiently large, the square
* root of LARGE, otherwise unchanged.
*
* =====================================================================
*
* .. Intrinsic Functions ..

**Methods inherited from class java.lang.Object** |

`clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait` |

###
DLABAD

public **DLABAD**()

###
DLABAD

public static void **DLABAD**(doubleW small,
doubleW large)