org.netlib.lapack
Class DPPSV
java.lang.Object
org.netlib.lapack.DPPSV
public class DPPSV
 extends java.lang.Object
DPPSV is a simplified interface to the JLAPACK routine dppsv.
This interface converts Javastyle 2D rowmajor arrays into
the 1D columnmajor linearized arrays expected by the lower
level JLAPACK routines. Using this interface also allows you
to omit offset and leading dimension arguments. However, because
of these conversions, these routines will be slower than the low
level ones. Following is the description from the original Fortran
source. Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* DPPSV computes the solution to a real system of linear equations
* A * X = B,
* where A is an NbyN symmetric positive definite matrix stored in
* packed format and X and B are NbyNRHS matrices.
*
* The Cholesky decomposition is used to factor A as
* A = U**T* U, if UPLO = 'U', or
* A = L * L**T, if UPLO = 'L',
* where U is an upper triangular matrix and L is a lower triangular
* matrix. The factored form of A is then used to solve the system of
* equations A * X = B.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The number of linear equations, i.e., the order of the
* matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* A, packed columnwise in a linear array. The jth column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j1)*(2nj)/2) = A(i,j) for j<=i<=n.
* See below for further details.
*
* On exit, if INFO = 0, the factor U or L from the Cholesky
* factorization A = U**T*U or A = L*L**T, in the same storage
* format as A.
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the NbyNRHS right hand side matrix B.
* On exit, if INFO = 0, the NbyNRHS solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = i, the ith argument had an illegal value
* > 0: if INFO = i, the leading minor of order i of A is not
* positive definite, so the factorization could not be
* completed, and the solution has not been computed.
*
* Further Details
* ===============
*
* The packed storage scheme is illustrated by the following example
* when N = 4, UPLO = 'U':
*
* Twodimensional storage of the symmetric matrix A:
*
* a11 a12 a13 a14
* a22 a23 a24
* a33 a34 (aij = conjg(aji))
* a44
*
* Packed storage of the upper triangle of A:
*
* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
*
* =====================================================================
*
* .. External Functions ..
Constructor Summary 
DPPSV()

Method Summary 
static void 
DPPSV(java.lang.String uplo,
int n,
int nrhs,
double[] ap,
double[][] b,
intW info)

Methods inherited from class java.lang.Object 
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 
DPPSV
public DPPSV()
DPPSV
public static void DPPSV(java.lang.String uplo,
int n,
int nrhs,
double[] ap,
double[][] b,
intW info)