org.netlib.lapack
Class Dsptrd

java.lang.Object
  extended by org.netlib.lapack.Dsptrd

public class Dsptrd
extends java.lang.Object

Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DSPTRD reduces a real symmetric matrix A stored in packed form to * symmetric tridiagonal form T by an orthogonal similarity * transformation: Q**T * A * Q = T. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) * On entry, the upper or lower triangle of the symmetric matrix * A, packed columnwise in a linear array. The j-th column of A * is stored in the array AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. * On exit, if UPLO = 'U', the diagonal and first superdiagonal * of A are overwritten by the corresponding elements of the * tridiagonal matrix T, and the elements above the first * superdiagonal, with the array TAU, represent the orthogonal * matrix Q as a product of elementary reflectors; if UPLO * = 'L', the diagonal and first subdiagonal of A are over- * written by the corresponding elements of the tridiagonal * matrix T, and the elements below the first subdiagonal, with * the array TAU, represent the orthogonal matrix Q as a product * of elementary reflectors. See Further Details. * * D (output) DOUBLE PRECISION array, dimension (N) * The diagonal elements of the tridiagonal matrix T: * D(i) = A(i,i). * * E (output) DOUBLE PRECISION array, dimension (N-1) * The off-diagonal elements of the tridiagonal matrix T: * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. * * TAU (output) DOUBLE PRECISION array, dimension (N-1) * The scalar factors of the elementary reflectors (see Further * Details). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * If UPLO = 'U', the matrix Q is represented as a product of elementary * reflectors * * Q = H(n-1) . . . H(2) H(1). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a real scalar, and v is a real vector with * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, * overwriting A(1:i-1,i+1), and tau is stored in TAU(i). * * If UPLO = 'L', the matrix Q is represented as a product of elementary * reflectors * * Q = H(1) H(2) . . . H(n-1). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a real scalar, and v is a real vector with * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, * overwriting A(i+2:n,i), and tau is stored in TAU(i). * * ===================================================================== * * .. Parameters ..


Constructor Summary
Dsptrd()
           
 
Method Summary
static void dsptrd(java.lang.String uplo, int n, double[] ap, int _ap_offset, double[] d, int _d_offset, double[] e, int _e_offset, double[] tau, int _tau_offset, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Dsptrd

public Dsptrd()
Method Detail

dsptrd

public static void dsptrd(java.lang.String uplo,
                          int n,
                          double[] ap,
                          int _ap_offset,
                          double[] d,
                          int _d_offset,
                          double[] e,
                          int _e_offset,
                          double[] tau,
                          int _tau_offset,
                          intW info)