org.netlib.lapack
Class Dstegr

java.lang.Object
  extended by org.netlib.lapack.Dstegr

public class Dstegr
extends java.lang.Object

Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DSTEGR computes selected eigenvalues and, optionally, eigenvectors * of a real symmetric tridiagonal matrix T. Eigenvalues and * eigenvectors can be selected by specifying either a range of values * or a range of indices for the desired eigenvalues. The eigenvalues * are computed by the dqds algorithm, while orthogonal eigenvectors are * computed from various ``good'' L D L^T representations (also known as * Relatively Robust Representations). Gram-Schmidt orthogonalization is * avoided as far as possible. More specifically, the various steps of * the algorithm are as follows. For the i-th unreduced block of T, * (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T * is a relatively robust representation, * (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high * relative accuracy by the dqds algorithm, * (c) If there is a cluster of close eigenvalues, "choose" sigma_i * close to the cluster, and go to step (a), * (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, * compute the corresponding eigenvector by forming a * rank-revealing twisted factorization. * The desired accuracy of the output can be specified by the input * parameter ABSTOL. * * For more details, see "A new O(n^2) algorithm for the symmetric * tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, * Computer Science Division Technical Report No. UCB/CSD-97-971, * UC Berkeley, May 1997. * * Note 1 : Currently DSTEGR is only set up to find ALL the n * eigenvalues and eigenvectors of T in O(n^2) time * Note 2 : Currently the routine DSTEIN is called when an appropriate * sigma_i cannot be chosen in step (c) above. DSTEIN invokes modified * Gram-Schmidt when eigenvalues are close. * Note 3 : DSTEGR works only on machines which follow ieee-754 * floating-point standard in their handling of infinities and NaNs. * Normal execution of DSTEGR may create NaNs and infinities and hence * may abort due to a floating point exception in environments which * do not conform to the ieee standard. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * RANGE (input) CHARACTER*1 * = 'A': all eigenvalues will be found. * = 'V': all eigenvalues in the half-open interval (VL,VU] * will be found. * = 'I': the IL-th through IU-th eigenvalues will be found. ********** Only RANGE = 'A' is currently supported ********************* * * N (input) INTEGER * The order of the matrix. N >= 0. * * D (input/output) DOUBLE PRECISION array, dimension (N) * On entry, the n diagonal elements of the tridiagonal matrix * T. On exit, D is overwritten. * * E (input/output) DOUBLE PRECISION array, dimension (N) * On entry, the (n-1) subdiagonal elements of the tridiagonal * matrix T in elements 1 to N-1 of E; E(N) need not be set. * On exit, E is overwritten. * * VL (input) DOUBLE PRECISION * VU (input) DOUBLE PRECISION * If RANGE='V', the lower and upper bounds of the interval to * be searched for eigenvalues. VL < VU. * Not referenced if RANGE = 'A' or 'I'. * * IL (input) INTEGER * IU (input) INTEGER * If RANGE='I', the indices (in ascending order) of the * smallest and largest eigenvalues to be returned. * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. * Not referenced if RANGE = 'A' or 'V'. * * ABSTOL (input) DOUBLE PRECISION * The absolute error tolerance for the * eigenvalues/eigenvectors. IF JOBZ = 'V', the eigenvalues and * eigenvectors output have residual norms bounded by ABSTOL, * and the dot products between different eigenvectors are * bounded by ABSTOL. If ABSTOL is less than N*EPS*|T|, then * N*EPS*|T| will be used in its place, where EPS is the * machine precision and |T| is the 1-norm of the tridiagonal * matrix. The eigenvalues are computed to an accuracy of * EPS*|T| irrespective of ABSTOL. If high relative accuracy * is important, set ABSTOL to DLAMCH( 'Safe minimum' ). * See Barlow and Demmel "Computing Accurate Eigensystems of * Scaled Diagonally Dominant Matrices", LAPACK Working Note #7 * for a discussion of which matrices define their eigenvalues * to high relative accuracy. * * M (output) INTEGER * The total number of eigenvalues found. 0 <= M <= N. * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. * * W (output) DOUBLE PRECISION array, dimension (N) * The first M elements contain the selected eigenvalues in * ascending order. * * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) * If JOBZ = 'V', then if INFO = 0, the first M columns of Z * contain the orthonormal eigenvectors of the matrix T * corresponding to the selected eigenvalues, with the i-th * column of Z holding the eigenvector associated with W(i). * If JOBZ = 'N', then Z is not referenced. * Note: the user must ensure that at least max(1,M) columns are * supplied in the array Z; if RANGE = 'V', the exact value of M * is not known in advance and an upper bound must be used. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= max(1,N). * * ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) * The support of the eigenvectors in Z, i.e., the indices * indicating the nonzero elements in Z. The i-th eigenvector * is nonzero only in elements ISUPPZ( 2*i-1 ) through * ISUPPZ( 2*i ). * * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal * (and minimal) LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,18*N) * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * IWORK (workspace/output) INTEGER array, dimension (LIWORK) * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. * * LIWORK (input) INTEGER * The dimension of the array IWORK. LIWORK >= max(1,10*N) * * If LIWORK = -1, then a workspace query is assumed; the * routine only calculates the optimal size of the IWORK array, * returns this value as the first entry of the IWORK array, and * no error message related to LIWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = 1, internal error in DLARRE, * if INFO = 2, internal error in DLARRV. * * Further Details * =============== * * Based on contributions by * Inderjit Dhillon, IBM Almaden, USA * Osni Marques, LBNL/NERSC, USA * * ===================================================================== * * .. Parameters ..


Constructor Summary
Dstegr()
           
 
Method Summary
static void dstegr(java.lang.String jobz, java.lang.String range, int n, double[] d, int _d_offset, double[] e, int _e_offset, double vl, double vu, int il, int iu, double abstol, intW m, double[] w, int _w_offset, double[] z, int _z_offset, int ldz, int[] isuppz, int _isuppz_offset, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Dstegr

public Dstegr()
Method Detail

dstegr

public static void dstegr(java.lang.String jobz,
                          java.lang.String range,
                          int n,
                          double[] d,
                          int _d_offset,
                          double[] e,
                          int _e_offset,
                          double vl,
                          double vu,
                          int il,
                          int iu,
                          double abstol,
                          intW m,
                          double[] w,
                          int _w_offset,
                          double[] z,
                          int _z_offset,
                          int ldz,
                          int[] isuppz,
                          int _isuppz_offset,
                          double[] work,
                          int _work_offset,
                          int lwork,
                          int[] iwork,
                          int _iwork_offset,
                          int liwork,
                          intW info)