org.netlib.lapack
Class Ilaenv
java.lang.Object
org.netlib.lapack.Ilaenv
public class Ilaenv
 extends java.lang.Object
Following is the description from the original
Fortran source. For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* ILAENV is called from the LAPACK routines to choose problemdependent
* parameters for the local environment. See ISPEC for a description of
* the parameters.
*
* This version provides a set of parameters which should give good,
* but not optimal, performance on many of the currently available
* computers. Users are encouraged to modify this subroutine to set
* the tuning parameters for their particular machine using the option
* and problem size information in the arguments.
*
* This routine will not function correctly if it is converted to all
* lower case. Converting it to all upper case is allowed.
*
* Arguments
* =========
*
* ISPEC (input) INTEGER
* Specifies the parameter to be returned as the value of
* ILAENV.
* = 1: the optimal blocksize; if this value is 1, an unblocked
* algorithm will give the best performance.
* = 2: the minimum block size for which the block routine
* should be used; if the usable block size is less than
* this value, an unblocked routine should be used.
* = 3: the crossover point (in a block routine, for N less
* than this value, an unblocked routine should be used)
* = 4: the number of shifts, used in the nonsymmetric
* eigenvalue routines
* = 5: the minimum column dimension for blocking to be used;
* rectangular blocks must have dimension at least k by m,
* where k is given by ILAENV(2,...) and m by ILAENV(5,...)
* = 6: the crossover point for the SVD (when reducing an m by n
* matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
* this value, a QR factorization is used first to reduce
* the matrix to a triangular form.)
* = 7: the number of processors
* = 8: the crossover point for the multishift QR and QZ methods
* for nonsymmetric eigenvalue problems.
* = 9: maximum size of the subproblems at the bottom of the
* computation tree in the divideandconquer algorithm
* (used by xGELSD and xGESDD)
* =10: ieee NaN arithmetic can be trusted not to trap
* =11: infinity arithmetic can be trusted not to trap
*
* NAME (input) CHARACTER*(*)
* The name of the calling subroutine, in either upper case or
* lower case.
*
* OPTS (input) CHARACTER*(*)
* The character options to the subroutine NAME, concatenated
* into a single character string. For example, UPLO = 'U',
* TRANS = 'T', and DIAG = 'N' for a triangular routine would
* be specified as OPTS = 'UTN'.
*
* N1 (input) INTEGER
* N2 (input) INTEGER
* N3 (input) INTEGER
* N4 (input) INTEGER
* Problem dimensions for the subroutine NAME; these may not all
* be required.
*
* (ILAENV) (output) INTEGER
* >= 0: the value of the parameter specified by ISPEC
* < 0: if ILAENV = k, the kth argument had an illegal value.
*
* Further Details
* ===============
*
* The following conventions have been used when calling ILAENV from the
* LAPACK routines:
* 1) OPTS is a concatenation of all of the character options to
* subroutine NAME, in the same order that they appear in the
* argument list for NAME, even if they are not used in determining
* the value of the parameter specified by ISPEC.
* 2) The problem dimensions N1, N2, N3, N4 are specified in the order
* that they appear in the argument list for NAME. N1 is used
* first, N2 second, and so on, and unused problem dimensions are
* passed a value of 1.
* 3) The parameter value returned by ILAENV is checked for validity in
* the calling subroutine. For example, ILAENV is used to retrieve
* the optimal blocksize for STRTRI as follows:
*
* NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, 1, 1, 1 )
* IF( NB.LE.1 ) NB = MAX( 1, N )
*
* =====================================================================
*
* .. Local Scalars ..
Method Summary 
static int 
ilaenv(int ispec,
java.lang.String name,
java.lang.String opts,
int n1,
int n2,
int n3,
int n4)

Methods inherited from class java.lang.Object 
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 
Ilaenv
public Ilaenv()
ilaenv
public static int ilaenv(int ispec,
java.lang.String name,
java.lang.String opts,
int n1,
int n2,
int n3,
int n4)