org.netlib.lapack
Class SGESVD

java.lang.Object
  extended by org.netlib.lapack.SGESVD

public class SGESVD
extends java.lang.Object

SGESVD is a simplified interface to the JLAPACK routine sgesvd.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * SGESVD computes the singular value decomposition (SVD) of a real * M-by-N matrix A, optionally computing the left and/or right singular * vectors. The SVD is written * * A = U * SIGMA * transpose(V) * * where SIGMA is an M-by-N matrix which is zero except for its * min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and * V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA * are the singular values of A; they are real and non-negative, and * are returned in descending order. The first min(m,n) columns of * U and V are the left and right singular vectors of A. * * Note that the routine returns V**T, not V. * * Arguments * ========= * * JOBU (input) CHARACTER*1 * Specifies options for computing all or part of the matrix U: * = 'A': all M columns of U are returned in array U: * = 'S': the first min(m,n) columns of U (the left singular * vectors) are returned in the array U; * = 'O': the first min(m,n) columns of U (the left singular * vectors) are overwritten on the array A; * = 'N': no columns of U (no left singular vectors) are * computed. * * JOBVT (input) CHARACTER*1 * Specifies options for computing all or part of the matrix * V**T: * = 'A': all N rows of V**T are returned in the array VT; * = 'S': the first min(m,n) rows of V**T (the right singular * vectors) are returned in the array VT; * = 'O': the first min(m,n) rows of V**T (the right singular * vectors) are overwritten on the array A; * = 'N': no rows of V**T (no right singular vectors) are * computed. * * JOBVT and JOBU cannot both be 'O'. * * M (input) INTEGER * The number of rows of the input matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the input matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, * if JOBU = 'O', A is overwritten with the first min(m,n) * columns of U (the left singular vectors, * stored columnwise); * if JOBVT = 'O', A is overwritten with the first min(m,n) * rows of V**T (the right singular vectors, * stored rowwise); * if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A * are destroyed. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * S (output) REAL array, dimension (min(M,N)) * The singular values of A, sorted so that S(i) >= S(i+1). * * U (output) REAL array, dimension (LDU,UCOL) * (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'. * If JOBU = 'A', U contains the M-by-M orthogonal matrix U; * if JOBU = 'S', U contains the first min(m,n) columns of U * (the left singular vectors, stored columnwise); * if JOBU = 'N' or 'O', U is not referenced. * * LDU (input) INTEGER * The leading dimension of the array U. LDU >= 1; if * JOBU = 'S' or 'A', LDU >= M. * * VT (output) REAL array, dimension (LDVT,N) * If JOBVT = 'A', VT contains the N-by-N orthogonal matrix * V**T; * if JOBVT = 'S', VT contains the first min(m,n) rows of * V**T (the right singular vectors, stored rowwise); * if JOBVT = 'N' or 'O', VT is not referenced. * * LDVT (input) INTEGER * The leading dimension of the array VT. LDVT >= 1; if * JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N). * * WORK (workspace/output) REAL array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK; * if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged * superdiagonal elements of an upper bidiagonal matrix B * whose diagonal is in S (not necessarily sorted). B * satisfies A = U * B * VT, so it has the same singular values * as A, and singular vectors related by U and VT. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= 1. * LWORK >= MAX(3*MIN(M,N)+MAX(M,N),5*MIN(M,N)). * For good performance, LWORK should generally be larger. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if SBDSQR did not converge, INFO specifies how many * superdiagonals of an intermediate bidiagonal form B * did not converge to zero. See the description of WORK * above for details. * * ===================================================================== * * .. Parameters ..


Constructor Summary
SGESVD()
           
 
Method Summary
static void SGESVD(java.lang.String jobu, java.lang.String jobvt, int m, int n, float[][] a, float[] s, float[][] u, float[][] vt, float[] work, int lwork, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

SGESVD

public SGESVD()
Method Detail

SGESVD

public static void SGESVD(java.lang.String jobu,
                          java.lang.String jobvt,
                          int m,
                          int n,
                          float[][] a,
                          float[] s,
                          float[][] u,
                          float[][] vt,
                          float[] work,
                          int lwork,
                          intW info)