## org.netlib.lapack Class SGTSV

```java.lang.Object
org.netlib.lapack.SGTSV
```

`public class SGTSVextends java.lang.Object`

```SGTSV is a simplified interface to the JLAPACK routine sgtsv.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact seymour@cs.utk.edu with any questions.

*     ..
*
*  Purpose
*  =======
*
*  SGTSV  solves the equation
*
*     A*X = B,
*
*  where A is an n by n tridiagonal matrix, by Gaussian elimination with
*  partial pivoting.
*
*  Note that the equation  A'*X = B  may be solved by interchanging the

*  order of the arguments DU and DL.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  DL      (input/output) REAL array, dimension (N-1)
*          On entry, DL must contain the (n-1) sub-diagonal elements of

*          A.
*
*          On exit, DL is overwritten by the (n-2) elements of the
*          second super-diagonal of the upper triangular matrix U from
*          the LU factorization of A, in DL(1), ..., DL(n-2).
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, D must contain the diagonal elements of A.
*
*          On exit, D is overwritten by the n diagonal elements of U.
*
*  DU      (input/output) REAL array, dimension (N-1)
*          On entry, DU must contain the (n-1) super-diagonal elements
*          of A.
*
*          On exit, DU is overwritten by the (n-1) elements of the first
*          super-diagonal of U.
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the N by NRHS matrix of right hand side matrix B.
*          On exit, if INFO = 0, the N by NRHS solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, U(i,i) is exactly zero, and the solution
*               has not been computed.  The factorization has not been
*               completed unless i = N.
*
*  =====================================================================
*
*     .. Parameters ..
```

Constructor Summary
`SGTSV()`

Method Summary
`static void` ```SGTSV(int n, int nrhs, float[] dl, float[] d, float[] du, float[][] b, intW info)```

Methods inherited from class java.lang.Object
`clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait`

Constructor Detail

### SGTSV

`public SGTSV()`
Method Detail

### SGTSV

```public static void SGTSV(int n,
int nrhs,
float[] dl,
float[] d,
float[] du,
float[][] b,
intW info)```