org.netlib.lapack
Class SLAEDA

java.lang.Object
  extended by org.netlib.lapack.SLAEDA

public class SLAEDA
extends java.lang.Object

SLAEDA is a simplified interface to the JLAPACK routine slaeda.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * SLAEDA computes the Z vector corresponding to the merge step in the * CURLVLth step of the merge process with TLVLS steps for the CURPBMth * problem. * * Arguments * ========= * * N (input) INTEGER * The dimension of the symmetric tridiagonal matrix. N >= 0. * * TLVLS (input) INTEGER * The total number of merging levels in the overall divide and * conquer tree. * * CURLVL (input) INTEGER * The current level in the overall merge routine, * 0 <= curlvl <= tlvls. * * CURPBM (input) INTEGER * The current problem in the current level in the overall * merge routine (counting from upper left to lower right). * * PRMPTR (input) INTEGER array, dimension (N lg N) * Contains a list of pointers which indicate where in PERM a * level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) * indicates the size of the permutation and incidentally the * size of the full, non-deflated problem. * * PERM (input) INTEGER array, dimension (N lg N) * Contains the permutations (from deflation and sorting) to be * applied to each eigenblock. * * GIVPTR (input) INTEGER array, dimension (N lg N) * Contains a list of pointers which indicate where in GIVCOL a * level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) * indicates the number of Givens rotations. * * GIVCOL (input) INTEGER array, dimension (2, N lg N) * Each pair of numbers indicates a pair of columns to take place * in a Givens rotation. * * GIVNUM (input) REAL array, dimension (2, N lg N) * Each number indicates the S value to be used in the * corresponding Givens rotation. * * Q (input) REAL array, dimension (N**2) * Contains the square eigenblocks from previous levels, the * starting positions for blocks are given by QPTR. * * QPTR (input) INTEGER array, dimension (N+2) * Contains a list of pointers which indicate where in Q an * eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates * the size of the block. * * Z (output) REAL array, dimension (N) * On output this vector contains the updating vector (the last * row of the first sub-eigenvector matrix and the first row of * the second sub-eigenvector matrix). * * ZTEMP (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * Further Details * =============== * * Based on contributions by * Jeff Rutter, Computer Science Division, University of California * at Berkeley, USA * * ===================================================================== * * .. Parameters ..


Constructor Summary
SLAEDA()
           
 
Method Summary
static void SLAEDA(int n, int tlvls, int curlvl, int curpbm, int[] prmptr, int[] perm, int[] givptr, int[][] givcol, float[][] givnum, float[] q, int[] qptr, float[] z, float[] ztemp, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

SLAEDA

public SLAEDA()
Method Detail

SLAEDA

public static void SLAEDA(int n,
                          int tlvls,
                          int curlvl,
                          int curpbm,
                          int[] prmptr,
                          int[] perm,
                          int[] givptr,
                          int[][] givcol,
                          float[][] givnum,
                          float[] q,
                          int[] qptr,
                          float[] z,
                          float[] ztemp,
                          intW info)