extended by org.netlib.lapack.SLANTP

public class SLANTP
extends java.lang.Object

SLANTP is a simplified interface to the JLAPACK routine slantp.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact with any questions.

* .. * * Purpose * ======= * * SLANTP returns the value of the one norm, or the Frobenius norm, or * the infinity norm, or the element of largest absolute value of a * triangular matrix A, supplied in packed form. * * Description * =========== * * SLANTP returns the value * * SLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm' * ( * ( norm1(A), NORM = '1', 'O' or 'o' * ( * ( normI(A), NORM = 'I' or 'i' * ( * ( normF(A), NORM = 'F', 'f', 'E' or 'e' * * where norm1 denotes the one norm of a matrix (maximum column sum), * normI denotes the infinity norm of a matrix (maximum row sum) and * normF denotes the Frobenius norm of a matrix (square root of sum of * squares). Note that max(abs(A(i,j))) is not a matrix norm. * * Arguments * ========= * * NORM (input) CHARACTER*1 * Specifies the value to be returned in SLANTP as described * above. * * UPLO (input) CHARACTER*1 * Specifies whether the matrix A is upper or lower triangular. * = 'U': Upper triangular * = 'L': Lower triangular * * DIAG (input) CHARACTER*1 * Specifies whether or not the matrix A is unit triangular. * = 'N': Non-unit triangular * = 'U': Unit triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. When N = 0, SLANTP is * set to zero. * * AP (input) REAL array, dimension (N*(N+1)/2) * The upper or lower triangular matrix A, packed columnwise in * a linear array. The j-th column of A is stored in the array * AP as follows: * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. * Note that when DIAG = 'U', the elements of the array AP * corresponding to the diagonal elements of the matrix A are * not referenced, but are assumed to be one. * * WORK (workspace) REAL array, dimension (LWORK), * where LWORK >= N when NORM = 'I'; otherwise, WORK is not * referenced. * * ===================================================================== * * .. Parameters ..

Constructor Summary
Method Summary
static float SLANTP(java.lang.String norm, java.lang.String uplo, java.lang.String diag, int n, float[] ap, float[] work)
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail


public SLANTP()
Method Detail


public static float SLANTP(java.lang.String norm,
                           java.lang.String uplo,
                           java.lang.String diag,
                           int n,
                           float[] ap,
                           float[] work)