org.netlib.lapack
Class SSYTRD
java.lang.Object
org.netlib.lapack.SSYTRD
public class SSYTRD
 extends java.lang.Object
SSYTRD is a simplified interface to the JLAPACK routine ssytrd.
This interface converts Javastyle 2D rowmajor arrays into
the 1D columnmajor linearized arrays expected by the lower
level JLAPACK routines. Using this interface also allows you
to omit offset and leading dimension arguments. However, because
of these conversions, these routines will be slower than the low
level ones. Following is the description from the original Fortran
source. Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* SSYTRD reduces a real symmetric matrix A to real symmetric
* tridiagonal form T by an orthogonal similarity transformation:
* Q**T * A * Q = T.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) REAL array, dimension (LDA,N)
* On entry, the symmetric matrix A. If UPLO = 'U', the leading
* NbyN upper triangular part of A contains the upper
* triangular part of the matrix A, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading NbyN lower triangular part of A contains the lower
* triangular part of the matrix A, and the strictly upper
* triangular part of A is not referenced.
* On exit, if UPLO = 'U', the diagonal and first superdiagonal
* of A are overwritten by the corresponding elements of the
* tridiagonal matrix T, and the elements above the first
* superdiagonal, with the array TAU, represent the orthogonal
* matrix Q as a product of elementary reflectors; if UPLO
* = 'L', the diagonal and first subdiagonal of A are over
* written by the corresponding elements of the tridiagonal
* matrix T, and the elements below the first subdiagonal, with
* the array TAU, represent the orthogonal matrix Q as a product
* of elementary reflectors. See Further Details.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* D (output) REAL array, dimension (N)
* The diagonal elements of the tridiagonal matrix T:
* D(i) = A(i,i).
*
* E (output) REAL array, dimension (N1)
* The offdiagonal elements of the tridiagonal matrix T:
* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
*
* TAU (output) REAL array, dimension (N1)
* The scalar factors of the elementary reflectors (see Further
* Details).
*
* WORK (workspace/output) REAL array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= 1.
* For optimum performance LWORK >= N*NB, where NB is the
* optimal blocksize.
*
* If LWORK = 1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = i, the ith argument had an illegal value
*
* Further Details
* ===============
*
* If UPLO = 'U', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(n1) . . . H(2) H(1).
*
* Each H(i) has the form
*
* H(i) = I  tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(i+1:n) = 0 and v(i) = 1; v(1:i1) is stored on exit in
* A(1:i1,i+1), and tau in TAU(i).
*
* If UPLO = 'L', the matrix Q is represented as a product of elementary
* reflectors
*
* Q = H(1) H(2) . . . H(n1).
*
* Each H(i) has the form
*
* H(i) = I  tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
* and tau in TAU(i).
*
* The contents of A on exit are illustrated by the following examples
* with n = 5:
*
* if UPLO = 'U': if UPLO = 'L':
*
* ( d e v2 v3 v4 ) ( d )
* ( d e v3 v4 ) ( e d )
* ( d e v4 ) ( v1 e d )
* ( d e ) ( v1 v2 e d )
* ( d ) ( v1 v2 v3 e d )
*
* where d and e denote diagonal and offdiagonal elements of T, and vi
* denotes an element of the vector defining H(i).
*
* =====================================================================
*
* .. Parameters ..
Method Summary 
static void 
SSYTRD(java.lang.String uplo,
int n,
float[][] a,
float[] d,
float[] e,
float[] tau,
float[] work,
int lwork,
intW info)

Methods inherited from class java.lang.Object 
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 
SSYTRD
public SSYTRD()
SSYTRD
public static void SSYTRD(java.lang.String uplo,
int n,
float[][] a,
float[] d,
float[] e,
float[] tau,
float[] work,
int lwork,
intW info)