org.netlib.lapack
Class Sgerqf

java.lang.Object
  extended by org.netlib.lapack.Sgerqf

public class Sgerqf
extends java.lang.Object

Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * SGERQF computes an RQ factorization of a real M-by-N matrix A: * A = R * Q. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, * if m <= n, the upper triangle of the subarray * A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R; * if m >= n, the elements on and above the (m-n)-th subdiagonal * contain the M-by-N upper trapezoidal matrix R; * the remaining elements, with the array TAU, represent the * orthogonal matrix Q as a product of min(m,n) elementary * reflectors (see Further Details). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * TAU (output) REAL array, dimension (min(M,N)) * The scalar factors of the elementary reflectors (see Further * Details). * * WORK (workspace/output) REAL array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,M). * For optimum performance LWORK >= M*NB, where NB is * the optimal blocksize. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * The matrix Q is represented as a product of elementary reflectors * * Q = H(1) H(2) . . . H(k), where k = min(m,n). * * Each H(i) has the form * * H(i) = I - tau * v * v' * * where tau is a real scalar, and v is a real vector with * v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in * A(m-k+i,1:n-k+i-1), and tau in TAU(i). * * ===================================================================== * * .. Local Scalars ..


Constructor Summary
Sgerqf()
           
 
Method Summary
static void sgerqf(int m, int n, float[] a, int _a_offset, int lda, float[] tau, int _tau_offset, float[] work, int _work_offset, int lwork, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Sgerqf

public Sgerqf()
Method Detail

sgerqf

public static void sgerqf(int m,
                          int n,
                          float[] a,
                          int _a_offset,
                          int lda,
                          float[] tau,
                          int _tau_offset,
                          float[] work,
                          int _work_offset,
                          int lwork,
                          intW info)