org.netlib.lapack
Class Sstedc

java.lang.Object
  extended by org.netlib.lapack.Sstedc

public class Sstedc
extends java.lang.Object

Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * SSTEDC computes all eigenvalues and, optionally, eigenvectors of a * symmetric tridiagonal matrix using the divide and conquer method. * The eigenvectors of a full or band real symmetric matrix can also be * found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this * matrix to tridiagonal form. * * This code makes very mild assumptions about floating point * arithmetic. It will work on machines with a guard digit in * add/subtract, or on those binary machines without guard digits * which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. * It could conceivably fail on hexadecimal or decimal machines * without guard digits, but we know of none. See SLAED3 for details. * * Arguments * ========= * * COMPZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only. * = 'I': Compute eigenvectors of tridiagonal matrix also. * = 'V': Compute eigenvectors of original dense symmetric * matrix also. On entry, Z contains the orthogonal * matrix used to reduce the original matrix to * tridiagonal form. * * N (input) INTEGER * The dimension of the symmetric tridiagonal matrix. N >= 0. * * D (input/output) REAL array, dimension (N) * On entry, the diagonal elements of the tridiagonal matrix. * On exit, if INFO = 0, the eigenvalues in ascending order. * * E (input/output) REAL array, dimension (N-1) * On entry, the subdiagonal elements of the tridiagonal matrix. * On exit, E has been destroyed. * * Z (input/output) REAL array, dimension (LDZ,N) * On entry, if COMPZ = 'V', then Z contains the orthogonal * matrix used in the reduction to tridiagonal form. * On exit, if INFO = 0, then if COMPZ = 'V', Z contains the * orthonormal eigenvectors of the original symmetric matrix, * and if COMPZ = 'I', Z contains the orthonormal eigenvectors * of the symmetric tridiagonal matrix. * If COMPZ = 'N', then Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1. * If eigenvectors are desired, then LDZ >= max(1,N). * * WORK (workspace/output) REAL array, * dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. * If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. * If COMPZ = 'V' and N > 1 then LWORK must be at least * ( 1 + 3*N + 2*N*lg N + 3*N**2 ), * where lg( N ) = smallest integer k such * that 2**k >= N. * If COMPZ = 'I' and N > 1 then LWORK must be at least * ( 1 + 4*N + N**2 ). * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * IWORK (workspace/output) INTEGER array, dimension (LIWORK) * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. * * LIWORK (input) INTEGER * The dimension of the array IWORK. * If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. * If COMPZ = 'V' and N > 1 then LIWORK must be at least * ( 6 + 6*N + 5*N*lg N ). * If COMPZ = 'I' and N > 1 then LIWORK must be at least * ( 3 + 5*N ). * * If LIWORK = -1, then a workspace query is assumed; the * routine only calculates the optimal size of the IWORK array, * returns this value as the first entry of the IWORK array, and * no error message related to LIWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: The algorithm failed to compute an eigenvalue while * working on the submatrix lying in rows and columns * INFO/(N+1) through mod(INFO,N+1). * * Further Details * =============== * * Based on contributions by * Jeff Rutter, Computer Science Division, University of California * at Berkeley, USA * Modified by Francoise Tisseur, University of Tennessee. * * ===================================================================== * * .. Parameters ..


Constructor Summary
Sstedc()
           
 
Method Summary
static void sstedc(java.lang.String compz, int n, float[] d, int _d_offset, float[] e, int _e_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int liwork, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Sstedc

public Sstedc()
Method Detail

sstedc

public static void sstedc(java.lang.String compz,
                          int n,
                          float[] d,
                          int _d_offset,
                          float[] e,
                          int _e_offset,
                          float[] z,
                          int _z_offset,
                          int ldz,
                          float[] work,
                          int _work_offset,
                          int lwork,
                          int[] iwork,
                          int _iwork_offset,
                          int liwork,
                          intW info)