org.netlib.lapack
Class Ssyevx

java.lang.Object
  extended by org.netlib.lapack.Ssyevx

public class Ssyevx
extends java.lang.Object

Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * SSYEVX computes selected eigenvalues and, optionally, eigenvectors * of a real symmetric matrix A. Eigenvalues and eigenvectors can be * selected by specifying either a range of values or a range of indices * for the desired eigenvalues. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * RANGE (input) CHARACTER*1 * = 'A': all eigenvalues will be found. * = 'V': all eigenvalues in the half-open interval (VL,VU] * will be found. * = 'I': the IL-th through IU-th eigenvalues will be found. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) REAL array, dimension (LDA, N) * On entry, the symmetric matrix A. If UPLO = 'U', the * leading N-by-N upper triangular part of A contains the * upper triangular part of the matrix A. If UPLO = 'L', * the leading N-by-N lower triangular part of A contains * the lower triangular part of the matrix A. * On exit, the lower triangle (if UPLO='L') or the upper * triangle (if UPLO='U') of A, including the diagonal, is * destroyed. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * VL (input) REAL * VU (input) REAL * If RANGE='V', the lower and upper bounds of the interval to * be searched for eigenvalues. VL < VU. * Not referenced if RANGE = 'A' or 'I'. * * IL (input) INTEGER * IU (input) INTEGER * If RANGE='I', the indices (in ascending order) of the * smallest and largest eigenvalues to be returned. * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. * Not referenced if RANGE = 'A' or 'V'. * * ABSTOL (input) REAL * The absolute error tolerance for the eigenvalues. * An approximate eigenvalue is accepted as converged * when it is determined to lie in an interval [a,b] * of width less than or equal to * * ABSTOL + EPS * max( |a|,|b| ) , * * where EPS is the machine precision. If ABSTOL is less than * or equal to zero, then EPS*|T| will be used in its place, * where |T| is the 1-norm of the tridiagonal matrix obtained * by reducing A to tridiagonal form. * * Eigenvalues will be computed most accurately when ABSTOL is * set to twice the underflow threshold 2*SLAMCH('S'), not zero. * If this routine returns with INFO>0, indicating that some * eigenvectors did not converge, try setting ABSTOL to * 2*SLAMCH('S'). * * See "Computing Small Singular Values of Bidiagonal Matrices * with Guaranteed High Relative Accuracy," by Demmel and * Kahan, LAPACK Working Note #3. * * M (output) INTEGER * The total number of eigenvalues found. 0 <= M <= N. * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. * * W (output) REAL array, dimension (N) * On normal exit, the first M elements contain the selected * eigenvalues in ascending order. * * Z (output) REAL array, dimension (LDZ, max(1,M)) * If JOBZ = 'V', then if INFO = 0, the first M columns of Z * contain the orthonormal eigenvectors of the matrix A * corresponding to the selected eigenvalues, with the i-th * column of Z holding the eigenvector associated with W(i). * If an eigenvector fails to converge, then that column of Z * contains the latest approximation to the eigenvector, and the * index of the eigenvector is returned in IFAIL. * If JOBZ = 'N', then Z is not referenced. * Note: the user must ensure that at least max(1,M) columns are * supplied in the array Z; if RANGE = 'V', the exact value of M * is not known in advance and an upper bound must be used. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= max(1,N). * * WORK (workspace/output) REAL array, dimension (LWORK) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The length of the array WORK. LWORK >= max(1,8*N). * For optimal efficiency, LWORK >= (NB+3)*N, * where NB is the max of the blocksize for SSYTRD and SORMTR * returned by ILAENV. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * IWORK (workspace) INTEGER array, dimension (5*N) * * IFAIL (output) INTEGER array, dimension (N) * If JOBZ = 'V', then if INFO = 0, the first M elements of * IFAIL are zero. If INFO > 0, then IFAIL contains the * indices of the eigenvectors that failed to converge. * If JOBZ = 'N', then IFAIL is not referenced. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, then i eigenvectors failed to converge. * Their indices are stored in array IFAIL. * * ===================================================================== * * .. Parameters ..


Constructor Summary
Ssyevx()
           
 
Method Summary
static void ssyevx(java.lang.String jobz, java.lang.String range, java.lang.String uplo, int n, float[] a, int _a_offset, int lda, float vl, float vu, int il, int iu, float abstol, intW m, float[] w, int _w_offset, float[] z, int _z_offset, int ldz, float[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, int[] ifail, int _ifail_offset, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Ssyevx

public Ssyevx()
Method Detail

ssyevx

public static void ssyevx(java.lang.String jobz,
                          java.lang.String range,
                          java.lang.String uplo,
                          int n,
                          float[] a,
                          int _a_offset,
                          int lda,
                          float vl,
                          float vu,
                          int il,
                          int iu,
                          float abstol,
                          intW m,
                          float[] w,
                          int _w_offset,
                          float[] z,
                          int _z_offset,
                          int ldz,
                          float[] work,
                          int _work_offset,
                          int lwork,
                          int[] iwork,
                          int _iwork_offset,
                          int[] ifail,
                          int _ifail_offset,
                          intW info)