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Abstract. Performance profiling of MPI programs generates overhead during
execution that introduces error in profile measurements. It is possible to track and
remove overhead online, but it is necessary to communicate execution delay be-
tween processes to correctly adjust their interdependent timing. We demonstrate
the first implementation of a onlne measurement overhead compensation system
for profiling MPI programs. This is implemented in the TAU performance sys-
tems. It requires novel techniques for delay communication in the use of MPI.
The ability to reduce measurement error is demonstrated for problematic test
cases and real applications.
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1 Introduction

When a parallel program is profiled, measurement operations generate overhead that
affects the performance observed. We call this performance intrusion [2|]. Performance
profiling tools typically report intrusion as a percentage slowdown of total execution
time, but the intrusion effects themselves will be distributed throughout the profile re-
sults. While performance intrusion can alter program execution and, thus, perceived per-
formance (i.e., performance perturbation), performance profiling tools rarely attempt to
adjust the performance measurements to compensate for the intrusion.

In earlier work [3], we present a technique to measure overhead on each process of a
parallel computation and remove its local effects. But these are not the only effects over-
head intrusion can cause. Due to inter-process communication, the delays introduced by
intrusion will propagate between processes. In more recent work [4]], we specify models
for parallel overhead compensation and the algorithms that must be used when profiling
message passing parallel programs. These models show why it is necessary to commu-
nicate intrusion delays with every message communication. However, this is not so easy
to accomplish.

This paper presents our results for the implementation of the parallel profile over-
head compensation models in an MPI environment. Such overhead compensation tech-
niques have never been implemented before. Here we outline our approach to piggyback
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intrusion delay on messages. We demonstrate the technique with applications and show
that measurement error due to overhead can be removed, locally and globally.

Section §2] provides a brief background on the problem. Our solution approach is
presented in Section §3l Section §4] outlines our experimental environment and shows
the results of our validation tests. Conclusions and future work are given in Section §3

2 Problem Background

Events are actions that occur during program execution. Typical events include interval
events that are characterized by a pair of actions marking entry and exit, and atomic
events that occur at a single place or time. Tools insert measurement code to track the
performance of a parallel program as made visible by the instrumented events. Execut-
ing the measurement code introduces overhead. If an event trace is collected, there are
techniques to analyze the trace and compensate the measurement overhead [[7/8/9110],
including the correction of perturbation effects.

Unfortunately, this type of analysis is not possible with profile-based measurements
where all compensation decisions must be made at the time the event occurs, more
or less. This raises the problem of how to track delays between processes. Basically,
measurement overhead occurring on one process affects events on other processes that
are causally related [12]. Consider a process that executes a measured routine a large
number of times (and thus incurs a large overhead associated with the entry and exit
instrumentation), and then sends a message to another process that blocks waiting for
the message. If the receiving process has accrued little measurement overhead before
the receive operation, the message receipt will be delayed. Without the receiver knowing
that that delay was due to the measurement overhead in the sender, the receiver’s profile
will end up accounting for the sender’s overhead as its waiting time, when in reality, it
may not have waited at all.

To accurately re-construct events in all the processes, we must account for the time
spent executing instrumentation calls in the sender process and subtract this time from
the wait time in the receive, if any. To do so, we propose a scheme where local delays
are propagated along with inter-process communication events in the form of piggy-
back messages. The delay value represents how much sooner a process would have
executed the given communication operation if there was no measurement overhead in
the process. The receiving process extracts this piggyback message and adjusts its local
delay. What is interesting is that the adjustment cannot be any greater than the waiting
time for the current receive.

Consider two cases. In the first case, the remote delay is equal to or exceeds the
sum of the waiting time and the local delay. In this case, the waiting time in the absence
of instrumentation is zero, as the message would be received as soon as the receive
call is executed. In the second case, the remote delay is less than the sum of the local
delay and the waiting time. Here, depending on whether the remote delay is less than or
greater than the local delay, the uninstrumented waiting time may be more or less than
the current waiting time. On receiving the piggyback message, the receiver compares
the local delay with the remote delay. The adjustment of wait time is the difference in
the remote delay and the local delay: Ad justment = remote(delay) — local(delay).
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This adjustment is subtracted from the original wait time to give the new waiting time:
Woew = W — Adjustment = W — (remote(delay) — local(delay)).

If we consider the beginning of the wait time and the receipt of the message as two
events, then, if there is no delay in the local receiving process, the point that corre-
sponds to the beginning of the wait routine is shifted to the left by the amount equal to
the local delay. And the point where the message is received shifts by an amount equal
to the remote delay. The distance between the two points is the new waiting period. The
adjustment (or the difference between the remote and local delays) may be positive,
negative, or zero corresponding to when the remote process experiences more, less or
the same delay as compared to the local process. Correspondingly, the wait time may
decrease, increase, or remain the same respectively, but it can never be adjusted to be
negative. This adjustment of waiting time is propagated along the callstack of the receiv-
ing process, so the inclusive time spent in all ancestor routines is adjusted accordingly.
This is a necessary calculation in order to properly compute profiling measurements.
When we compute the local delay (at both sender and receiver processes), we assess
the measurement overhead and then subtract the waiting time adjustments that have
been made in the program. This value is then sent along with a message. Thus, delays
from one process reach all processes that have causally related events.

The full details of our parallel profile compensation algorithms are described in our
earlier paper [4].

3 Implementation

To test our models of parallel overhead compensation, we built a prototype using the
TAU performance system [5] and the Message Passing Interface (MPI). Our goal was
to produce a widely portable prototype that could be efficiently implemented and easily
applied. We chose MPI as the communication substrate due to its wide acceptance in
the parallel computing community as the de-facto message communication standard, as
well as due to its portable tool support.

3.1 MPI Profiling Support

MPI supports creation of portable profiling and tracing tools using its profiling inter-
face, PMPI. This interface allows a tool to interpose a library between the application
and the MPI substrate and intercept one or more MPI calls. MPI provides a name-
shifted interface to all its calls. For example, an MPI call such as MPI_Send () is also
available as PMPI_Send (). Both are guaranteed by the MPI standard to provide the
same functionality. Furthermore, if a tool defines an MPI_Send () call, it takes prece-
dence over the MPI library’s MPI_Send () call (this is done by using weak bindings for
defining the library’s calls). The tool can then define one or more MPI bindings and
create measurement timers and start and stop them around the name-shifted version of
the corresponding MPI call. Every MPI implementation must implement this profiling
interface to conform to the MPI standard. This mechanism allows vendors of parallel
systems to optimize the implementation of MPI to their target platforms and at the same
time expose the hooks for tracking MPI performance to tool builders without providing
them access to their proprietary source code.
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3.2 Schemes to Piggyback Delay

To transmit the local delays encountered in a process (due to program instrumenta-
tion) to other processes, we examined several alternatives. The first scheme modifies
the source code of the underlying MPI implementation by extending the header sent
along with a message in the communication substrate (Photon [11]] uses this approach).
Unfortunately, it is not portable to all MPI implementations and relies on a specially
instrumented communication library. The second scheme sends an additional message
containing the delay information for every data message. This scheme only requires
changes to the portable MPI wrapper interposition library for the tool. While it is
portable to all MPI implementations, it has a performance penalty associated with trans-
mitting an additional message, a penalty not incurred by the first scheme. As a result,
the overhead caused by the additional message would require further compensation.

The third scheme copies the contents of the original message and creates a new
message with our own header that would include the delay information. This scheme
has the portability advantage of the second scheme and avoids the second scheme’s
transmission of an additional message. However, copying contents of a message could
prove to be an expensive operation, especially in the context of large messages that are
transmitted in point-to- point communication operations.

We implemented a modification of the third scheme, but instead of building a new
message and copying buffers in and out of messages (at the sender and the receiver),
we create a new datatype. This new datatype is a structure with two members. The
first member is a pointer to the original message buffer comprised of n elements of
the datatype passed to the MPI call. The second member is a double precision num-
ber that contains the local delay value. Once created, the structure is committed as a
new user-defined datatype and MPI is instructed to send or receive one element of the
new datatype. Internally, MPI may transmit the new message by composing the mes-
sage from the two members by using vector read and write calls instead of its scalar
counterparts. This efficient transmission of the delay value is portable to all MPI imple-
mentations, sends only a single message, and avoids expensive copying of data buffers
to construct and extract messages.

3.3 TAu Overhead Compensation Prototype

To test the validity of our parallel profile compensation models, we built the portable
prototype within the TAU performance system [5]. We previously implemented local
overhead compensation, and now included the parallel compensation support. TAU

computes parallel profile data during execution for each instrumented event. At run-
time, TAU maintains an event callstack for each thread of execution. This callstack has
performance information for the currently executing event (e.g., a routine entry) and its
ancestors. We compute the delay that a process sees locally by first adding the number
of completed calls to half the number of entries along the thread’s callstack. We assume
that an enter profile call takes roughly the same time as an exit profile call, which is
true is most cases. Once we know the total number of timer calls and the total overhead
associated with calling the enter and exit methods (see [3] for details), their product
gives the local timer overhead. We keep track of adjusted wait times in a process, as
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explained earlier and subtract it from the local overhead to compute the local delay.
This delay value is then piggybacked with a message.

Mapping MPI Calls. The essence of our parallel overhead compensation scheme is
that whenever two processes interact with each other, the receiver is made aware of
the sender’s delay value, or how much sooner the communication operation would
have taken place in the absence of instrumentation. We have discussed above how this
scheme operates for synchronous message communication operations using MPI_Send
and MPI_Recv. In this section we explore how other MPI calls can be made aware of
remote delays.

Asynchronous Operations. When storing or retrieving the piggyback value, we create
an auto variable on the stack in our wrapper routines for MPI_Send or MPI_Recv. Syn-
chronization operations involve loads or stores to this variable. The logic to process the
piggyback value when it is received is incorporated in the MPI_Recv wrapper routine.
Here, we compare the local and remote delays to arrive at how much adjustment needs
to be made to the waiting time. Now let us examine the asynchronous MPI_Isend and
MPI_Irecv calls. When the user issues the MPI_Isend call, we compute the local delay
and create a global variable where this is stored. The location of this global piggyback
variable in the heap memory is used when we create our struct for a new datatype for
sending the message.

On the receiving side, a similar arrangement of the piggyback value is used. When
the message is finally received, MPI automatically copies the contents of the piggyback
value into the heap where this value is to be stored. We also create a map that links
the address of the MPI request to the address of this piggyback value. The logic that
compares the local and remote delays cannot be incorporated in the MPI_Irecv wrapp-
per due to the very nature of the asynchronous operation (the values are not received
when the routine executes). Hence, we do not adjust the time spent in MPI_Irecv as we
did for MPI_Recv. Instead, an asynchronous message is visible to the program only af-
ter executing the MPI Wait, MPI_Test, or variants of these calls (Waitall, Waitsome,
Testall, Testsome) to wait for or test one or more requests. When a request is satis-
fied, we examine the map and retrieve the value of the piggyback variable where the
remote process’ overhead is stored. Then, a comparison of local and remote delays and
an adjustment of waiting time is made on the receiving side. When more than one mes-
sage is received by the process, we need to examine all the remote delays to determine
how much time the process would have waited in the absence of instrumentation. We
discuss this in more detail next with collective operations.

Collective Operations. Consider the class of collective operations supported by MPL
Let us first examine the MPI_Gather call where each process in a given communica-
tor provides a single data item to MPI. The process designated with the rank of root
gathers all the data in an array. It is important to communicate the local delays from
each process to the root process. To do this, we form a message with the piggyback
delay value and call a single MPI_Gather call. At the receiving end, we receive a sin-
gle contiguous buffer where the application data and the delay values are put together
in a single buffer. We extract the piggyback values out of this buffer and construct the
application buffer with the rest. Once we get an array of the delay values from each
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process we compute the minimum delay value from the group of processes. Since the
collective operation cannot complete without the message with the minimum delay, it
must adjust its waiting time based on this value. So, the collective operation reduces to
the case where the receiver gets a message from one process that has the least delay in
the communicator. We can now apply the performance overhead compensation model
as described in the previous section.

When broadcasting a message from one task to several, MPI_Bcast is modelled
based on the two process overhead compensation model (see [4]). We create a new
datatype, on the root process, that embeds the original message and the local delay
value. This message is sent to all other members of the group. Each receiver compares
the remote delay with its local delay and makes adjustments to the waiting time and
local overhead, as if it had received a single message from the remote task. We use the
model described earlier to do this.

To model MPI_Scatter, which distributes a distinct message to all members of the
group, we create a new datatype that includes the overhead from the root process. This
is similar to the MPI_Gather operation. After the operation is completed, each receiver
examines the remote overhead and treats it as if it had received a single message from
the root node, applying our previous scheme for compensating for perturbation.

MPI Barrier requires all tasks to block until all processes invoke this routine.
MPI_Barrier is implemented as a combination of two operations: MPI_Gather and
MPI_Bcast, sending the local delay from each task to the root task (arbitrarily selected
as the process with the least rank in the communicator). This task examines the local
delay and compares it with the task with the least delay, adjusts its wait time and then
sends the new local delay to all tasks using the MPI_Bcast operation. This mechanism
preserves the efficiencies that the underlying MPI substrate may provide in implement-
ing a collective operation. By mapping one MPI routine to another, we exploit those
efficiencies.

4 Experimental Results

We validate our parallel performance intrusion compensation model using a prototype
implemented within the TAU performance system. To illustrate the problem, we ex-
amine a parallel MPI application that computes the value of ® using the Monte-carlo
integration algorithm. The program calculates the area under the pi function curve from
0 to 1. The program comprises of a master (or server) task that generates work packets
with a set of random numbers. The master task waits for a request from any worker and
sends the chunk of randomly generated numbers to it. For each pair of numbers that
is given to a particular worker, it finds out if the pair of cartesian co-ordinates repre-
sented by the numbers is below or above the pi function curve. Then, collectively, the
workers estimate the value of pi iteratively until it is within a given error range. This
simple example highlights how instrumentation overheads accumulated at the worker
tasks are communicated to the master task. We execute the application in four modes:
when there is no TAU instrumentation, with instrumentation without any compensation,
with local perturbation compensation, and finally, with parallel perturbation compensa-
tion. As shown in table[T] these experiments are shown as distinct columns and we show
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Table 1. A comparison of parallel overhead compensation scheme in Monte-carlo integrator

|Task |No instrumentation|No compensation|Local compensation|Parallel compensati0n|

Master 73.926 128.179 139.56 73.926
Worker 73.834 128.173 73.212 73.909

the time spent in the worker and master tasks. We show the minimum times spent in the
respective tasks. The timer overhead associated with a TAU timer was 480 nanoseconds
on an Intel®Itanium2 Linux machine running at 1.5 GHz. The accuracy of compensa-
tion improves when we use high resolution timers, such as those provided by PAPI[1].
The results in Figure[Tland Table[I]show that local compensation schemes do man-
age to reduce the overhead in the worker tasks, but they fail in the master. The parallel
compensation scheme reduces the overhead properly in both master and worker tasks.

5 Conclusion

Most parallel performance measurement tools ignore the overhead incurred by their
use. Tool developers attempt to build the measurement system as efficiently as possible,
but do not attempt to quantify the intrusion other than as a percentage slowdown in ex-
ecution time. Our earlier work on overhead compensation in parallel profiling showed
that the intrusion effects on the performance of events local to a process can be cor-
rected [3] and also modeled how local overheads affected performance delay across the
computation [4]. This paper implements those parallel models in the context of MPI
message passing and demonstrates that parallel overhead compensation can be effec-
tive in practice to improve measurement error. The engineering feats to accomplish the
implementation are novel. In particular, the approach to delay piggybacking can be gen-
eralized to other problems where additional information must be sent with messages.

It is important to understand that we are not saying that the performance profile we
produce with overhead compensation represents the actual performance profile of an
uninstrumented execution. The performance uncertainty principle [2]] implies that the
accuracy of performance data is inversely correlated with the degree of performance in-
strumentation. Our goal is to improve the tradeoff, that is, to improve the accuracy of the
performance being measured during profiling. What we are saying in this paper is that the
performance profiles produced with our models for performance overhead compensation
will be more accurate than performance results produced without compensation.
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