MAGMA  2.3.0
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages
getf2: LU panel factorization - no pivoting

Functions

magma_int_t magma_cgetf2_nopiv_batched (magma_int_t m, magma_int_t n, magmaFloatComplex **dA_array, magma_int_t ldda, magmaFloatComplex **dW0_displ, magmaFloatComplex **dW1_displ, magmaFloatComplex **dW2_displ, magma_int_t *info_array, magma_int_t gbstep, magma_int_t batchCount, magma_queue_t queue)
 CGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting. More...
 
magma_int_t magma_dgetf2_nopiv_batched (magma_int_t m, magma_int_t n, double **dA_array, magma_int_t ldda, double **dW0_displ, double **dW1_displ, double **dW2_displ, magma_int_t *info_array, magma_int_t gbstep, magma_int_t batchCount, magma_queue_t queue)
 DGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting. More...
 
magma_int_t magma_sgetf2_nopiv_batched (magma_int_t m, magma_int_t n, float **dA_array, magma_int_t ldda, float **dW0_displ, float **dW1_displ, float **dW2_displ, magma_int_t *info_array, magma_int_t gbstep, magma_int_t batchCount, magma_queue_t queue)
 SGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting. More...
 
magma_int_t magma_zgetf2_nopiv_batched (magma_int_t m, magma_int_t n, magmaDoubleComplex **dA_array, magma_int_t ldda, magmaDoubleComplex **dW0_displ, magmaDoubleComplex **dW1_displ, magmaDoubleComplex **dW2_displ, magma_int_t *info_array, magma_int_t gbstep, magma_int_t batchCount, magma_queue_t queue)
 ZGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting. More...
 

Detailed Description

Function Documentation

magma_int_t magma_cgetf2_nopiv_batched ( magma_int_t  m,
magma_int_t  n,
magmaFloatComplex **  dA_array,
magma_int_t  ldda,
magmaFloatComplex **  dW0_displ,
magmaFloatComplex **  dW1_displ,
magmaFloatComplex **  dW2_displ,
magma_int_t *  info_array,
magma_int_t  gbstep,
magma_int_t  batchCount,
magma_queue_t  queue 
)

CGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.

Parameters
[in]mINTEGER The number of rows of each matrix A. M >= 0.
[in]nINTEGER The number of columns of each matrix A. N >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a COMPLEX array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of each array A. LDDA >= max(1,M).
dW0_displ(workspace) Array of pointers, dimension (batchCount).
dW1_displ(workspace) Array of pointers, dimension (batchCount).
dW2_displ(workspace) Array of pointers, dimension (batchCount).
[out]info_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
[in]gbstepINTEGER internal use.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_dgetf2_nopiv_batched ( magma_int_t  m,
magma_int_t  n,
double **  dA_array,
magma_int_t  ldda,
double **  dW0_displ,
double **  dW1_displ,
double **  dW2_displ,
magma_int_t *  info_array,
magma_int_t  gbstep,
magma_int_t  batchCount,
magma_queue_t  queue 
)

DGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.

Parameters
[in]mINTEGER The number of rows of each matrix A. M >= 0.
[in]nINTEGER The number of columns of each matrix A. N >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a DOUBLE PRECISION array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of each array A. LDDA >= max(1,M).
dW0_displ(workspace) Array of pointers, dimension (batchCount).
dW1_displ(workspace) Array of pointers, dimension (batchCount).
dW2_displ(workspace) Array of pointers, dimension (batchCount).
[out]info_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
[in]gbstepINTEGER internal use.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_sgetf2_nopiv_batched ( magma_int_t  m,
magma_int_t  n,
float **  dA_array,
magma_int_t  ldda,
float **  dW0_displ,
float **  dW1_displ,
float **  dW2_displ,
magma_int_t *  info_array,
magma_int_t  gbstep,
magma_int_t  batchCount,
magma_queue_t  queue 
)

SGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.

Parameters
[in]mINTEGER The number of rows of each matrix A. M >= 0.
[in]nINTEGER The number of columns of each matrix A. N >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of each array A. LDDA >= max(1,M).
dW0_displ(workspace) Array of pointers, dimension (batchCount).
dW1_displ(workspace) Array of pointers, dimension (batchCount).
dW2_displ(workspace) Array of pointers, dimension (batchCount).
[out]info_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
[in]gbstepINTEGER internal use.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.
magma_int_t magma_zgetf2_nopiv_batched ( magma_int_t  m,
magma_int_t  n,
magmaDoubleComplex **  dA_array,
magma_int_t  ldda,
magmaDoubleComplex **  dW0_displ,
magmaDoubleComplex **  dW1_displ,
magmaDoubleComplex **  dW2_displ,
magma_int_t *  info_array,
magma_int_t  gbstep,
magma_int_t  batchCount,
magma_queue_t  queue 
)

ZGETF2 computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.

Parameters
[in]mINTEGER The number of rows of each matrix A. M >= 0.
[in]nINTEGER The number of columns of each matrix A. N >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a COMPLEX_16 array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of each array A. LDDA >= max(1,M).
dW0_displ(workspace) Array of pointers, dimension (batchCount).
dW1_displ(workspace) Array of pointers, dimension (batchCount).
dW2_displ(workspace) Array of pointers, dimension (batchCount).
[out]info_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
[in]gbstepINTEGER internal use.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.