MAGMA  2.3.0
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages
getrf: LU factorization - no pivoting

Functions

magma_int_t magma_cgetrf_nopiv (magma_int_t m, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, magma_int_t *info)
 CGETRF_NOPIV computes an LU factorization of a general M-by-N matrix A without pivoting. More...
 
magma_int_t magma_cgetrf_nopiv_gpu (magma_int_t m, magma_int_t n, magmaFloatComplex_ptr dA, magma_int_t ldda, magma_int_t *info)
 CGETRF_NOPIV_GPU computes an LU factorization of a general M-by-N matrix A without any pivoting. More...
 
magma_int_t magma_dgetrf_nopiv (magma_int_t m, magma_int_t n, double *A, magma_int_t lda, magma_int_t *info)
 DGETRF_NOPIV computes an LU factorization of a general M-by-N matrix A without pivoting. More...
 
magma_int_t magma_dgetrf_nopiv_gpu (magma_int_t m, magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *info)
 DGETRF_NOPIV_GPU computes an LU factorization of a general M-by-N matrix A without any pivoting. More...
 
magma_int_t magma_sgetrf_nopiv (magma_int_t m, magma_int_t n, float *A, magma_int_t lda, magma_int_t *info)
 SGETRF_NOPIV computes an LU factorization of a general M-by-N matrix A without pivoting. More...
 
magma_int_t magma_sgetrf_nopiv_gpu (magma_int_t m, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *info)
 SGETRF_NOPIV_GPU computes an LU factorization of a general M-by-N matrix A without any pivoting. More...
 
magma_int_t magma_zgetrf_nopiv (magma_int_t m, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *info)
 ZGETRF_NOPIV computes an LU factorization of a general M-by-N matrix A without pivoting. More...
 
magma_int_t magma_zgetrf_nopiv_gpu (magma_int_t m, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *info)
 ZGETRF_NOPIV_GPU computes an LU factorization of a general M-by-N matrix A without any pivoting. More...
 

Detailed Description

Function Documentation

magma_int_t magma_cgetrf_nopiv ( magma_int_t  m,
magma_int_t  n,
magmaFloatComplex *  A,
magma_int_t  lda,
magma_int_t *  info 
)

CGETRF_NOPIV computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a CPU-only (not accelerated) version.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]ACOMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
magma_int_t magma_cgetrf_nopiv_gpu ( magma_int_t  m,
magma_int_t  n,
magmaFloatComplex_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

CGETRF_NOPIV_GPU computes an LU factorization of a general M-by-N matrix A without any pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dACOMPLEX array on the GPU, dimension (LDDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
magma_int_t magma_dgetrf_nopiv ( magma_int_t  m,
magma_int_t  n,
double *  A,
magma_int_t  lda,
magma_int_t *  info 
)

DGETRF_NOPIV computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a CPU-only (not accelerated) version.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]ADOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
magma_int_t magma_dgetrf_nopiv_gpu ( magma_int_t  m,
magma_int_t  n,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

DGETRF_NOPIV_GPU computes an LU factorization of a general M-by-N matrix A without any pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
magma_int_t magma_sgetrf_nopiv ( magma_int_t  m,
magma_int_t  n,
float *  A,
magma_int_t  lda,
magma_int_t *  info 
)

SGETRF_NOPIV computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a CPU-only (not accelerated) version.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]AREAL array, dimension (LDA,N) On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
magma_int_t magma_sgetrf_nopiv_gpu ( magma_int_t  m,
magma_int_t  n,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

SGETRF_NOPIV_GPU computes an LU factorization of a general M-by-N matrix A without any pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dAREAL array on the GPU, dimension (LDDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
magma_int_t magma_zgetrf_nopiv ( magma_int_t  m,
magma_int_t  n,
magmaDoubleComplex *  A,
magma_int_t  lda,
magma_int_t *  info 
)

ZGETRF_NOPIV computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a CPU-only (not accelerated) version.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]ACOMPLEX_16 array, dimension (LDA,N) On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
magma_int_t magma_zgetrf_nopiv_gpu ( magma_int_t  m,
magma_int_t  n,
magmaDoubleComplex_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

ZGETRF_NOPIV_GPU computes an LU factorization of a general M-by-N matrix A without any pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dACOMPLEX_16 array on the GPU, dimension (LDDA,N). On entry, the M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
  • > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.