MAGMA  2.3.0 Matrix Algebra for GPU and Multicore Architectures
getrf: LU factorization - no pivoting

## Functions

magma_int_t magma_cgetrf_nopiv_batched (magma_int_t m, magma_int_t n, magmaFloatComplex **dA_array, magma_int_t ldda, magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
CGETRF computes an LU factorization of a general M-by-N matrix A without pivoting. More...

magma_int_t magma_dgetrf_nopiv_batched (magma_int_t m, magma_int_t n, double **dA_array, magma_int_t ldda, magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
DGETRF computes an LU factorization of a general M-by-N matrix A without pivoting. More...

magma_int_t magma_sgetrf_nopiv_batched (magma_int_t m, magma_int_t n, float **dA_array, magma_int_t ldda, magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
SGETRF computes an LU factorization of a general M-by-N matrix A without pivoting. More...

magma_int_t magma_zgetrf_nopiv_batched (magma_int_t m, magma_int_t n, magmaDoubleComplex **dA_array, magma_int_t ldda, magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
ZGETRF computes an LU factorization of a general M-by-N matrix A without pivoting. More...

## Function Documentation

 magma_int_t magma_cgetrf_nopiv_batched ( magma_int_t m, magma_int_t n, magmaFloatComplex ** dA_array, magma_int_t ldda, magma_int_t * info_array, magma_int_t batchCount, magma_queue_t queue )

CGETRF computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.

Parameters
 [in] m INTEGER The number of rows of each matrix A. M >= 0. [in] n INTEGER The number of columns of each matrix A. N >= 0. [in,out] dA_array Array of pointers, dimension (batchCount). Each is a COMPLEX array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. [in] ldda INTEGER The leading dimension of each array A. LDDA >= max(1,M). [out] info_array Array of INTEGERs, dimension (batchCount), for corresponding matrices. = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. [in] batchCount INTEGER The number of matrices to operate on. [in] queue magma_queue_t Queue to execute in.
 magma_int_t magma_dgetrf_nopiv_batched ( magma_int_t m, magma_int_t n, double ** dA_array, magma_int_t ldda, magma_int_t * info_array, magma_int_t batchCount, magma_queue_t queue )

DGETRF computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.

Parameters
 [in] m INTEGER The number of rows of each matrix A. M >= 0. [in] n INTEGER The number of columns of each matrix A. N >= 0. [in,out] dA_array Array of pointers, dimension (batchCount). Each is a DOUBLE PRECISION array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. [in] ldda INTEGER The leading dimension of each array A. LDDA >= max(1,M). [out] info_array Array of INTEGERs, dimension (batchCount), for corresponding matrices. = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. [in] batchCount INTEGER The number of matrices to operate on. [in] queue magma_queue_t Queue to execute in.
 magma_int_t magma_sgetrf_nopiv_batched ( magma_int_t m, magma_int_t n, float ** dA_array, magma_int_t ldda, magma_int_t * info_array, magma_int_t batchCount, magma_queue_t queue )

SGETRF computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.

Parameters
 [in] m INTEGER The number of rows of each matrix A. M >= 0. [in] n INTEGER The number of columns of each matrix A. N >= 0. [in,out] dA_array Array of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. [in] ldda INTEGER The leading dimension of each array A. LDDA >= max(1,M). [out] info_array Array of INTEGERs, dimension (batchCount), for corresponding matrices. = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. [in] batchCount INTEGER The number of matrices to operate on. [in] queue magma_queue_t Queue to execute in.
 magma_int_t magma_zgetrf_nopiv_batched ( magma_int_t m, magma_int_t n, magmaDoubleComplex ** dA_array, magma_int_t ldda, magma_int_t * info_array, magma_int_t batchCount, magma_queue_t queue )

ZGETRF computes an LU factorization of a general M-by-N matrix A without pivoting.

The factorization has the form A = L * U where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

This is the right-looking Level 3 BLAS version of the algorithm.

This is a batched version that factors batchCount M-by-N matrices in parallel. dA, and info become arrays with one entry per matrix.

Parameters
 [in] m INTEGER The number of rows of each matrix A. M >= 0. [in] n INTEGER The number of columns of each matrix A. N >= 0. [in,out] dA_array Array of pointers, dimension (batchCount). Each is a COMPLEX_16 array on the GPU, dimension (LDDA,N). On entry, each pointer is an M-by-N matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. [in] ldda INTEGER The leading dimension of each array A. LDDA >= max(1,M). [out] info_array Array of INTEGERs, dimension (batchCount), for corresponding matrices. = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. [in] batchCount INTEGER The number of matrices to operate on. [in] queue magma_queue_t Queue to execute in.