MAGMA
2.3.0
Matrix Algebra for GPU and Multicore Architectures

Functions  
magma_int_t  magma_cgetrs_batched (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaFloatComplex **dA_array, magma_int_t ldda, magma_int_t **dipiv_array, magmaFloatComplex **dB_array, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue) 
CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general NbyN matrix A using the LU factorization computed by CGETRF. More...  
magma_int_t  magma_dgetrs_batched (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, double **dA_array, magma_int_t ldda, magma_int_t **dipiv_array, double **dB_array, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue) 
DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general NbyN matrix A using the LU factorization computed by DGETRF. More...  
magma_int_t  magma_sgetrs_batched (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, float **dA_array, magma_int_t ldda, magma_int_t **dipiv_array, float **dB_array, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue) 
SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general NbyN matrix A using the LU factorization computed by SGETRF. More...  
magma_int_t  magma_zgetrs_batched (magma_trans_t trans, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex **dA_array, magma_int_t ldda, magma_int_t **dipiv_array, magmaDoubleComplex **dB_array, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue) 
ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general NbyN matrix A using the LU factorization computed by ZGETRF. More...  
magma_int_t magma_cgetrs_batched  (  magma_trans_t  trans, 
magma_int_t  n,  
magma_int_t  nrhs,  
magmaFloatComplex **  dA_array,  
magma_int_t  ldda,  
magma_int_t **  dipiv_array,  
magmaFloatComplex **  dB_array,  
magma_int_t  lddb,  
magma_int_t  batchCount,  
magma_queue_t  queue  
) 
CGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general NbyN matrix A using the LU factorization computed by CGETRF.
This is a batched version that solves batchCount NbyN matrices in parallel. dA, dB, and ipiv become arrays with one entry per matrix.
[in]  trans  magma_trans_t Specifies the form of the system of equations:

[in]  n  INTEGER The order of the matrix A. N >= 0. 
[in]  nrhs  INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. 
[in,out]  dA_array  Array of pointers, dimension (batchCount). Each is a COMPLEX array on the GPU, dimension (LDDA,N). On entry, each pointer is an MbyN matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. 
[in]  ldda  INTEGER The leading dimension of each array A. LDDA >= max(1,M). 
[out]  dipiv_array  Array of pointers, dimension (batchCount), for corresponding matrices. Each is an INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). 
[in,out]  dB_array  Array of pointers, dimension (batchCount). Each is a COMPLEX array on the GPU, dimension (LDDB,N). On entry, each pointer is an right hand side matrix B. On exit, each pointer is the solution matrix X. 
[in]  lddb  INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[in]  batchCount  INTEGER The number of matrices to operate on. 
[in]  queue  magma_queue_t Queue to execute in. 
magma_int_t magma_dgetrs_batched  (  magma_trans_t  trans, 
magma_int_t  n,  
magma_int_t  nrhs,  
double **  dA_array,  
magma_int_t  ldda,  
magma_int_t **  dipiv_array,  
double **  dB_array,  
magma_int_t  lddb,  
magma_int_t  batchCount,  
magma_queue_t  queue  
) 
DGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general NbyN matrix A using the LU factorization computed by DGETRF.
This is a batched version that solves batchCount NbyN matrices in parallel. dA, dB, and ipiv become arrays with one entry per matrix.
[in]  trans  magma_trans_t Specifies the form of the system of equations:

[in]  n  INTEGER The order of the matrix A. N >= 0. 
[in]  nrhs  INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. 
[in,out]  dA_array  Array of pointers, dimension (batchCount). Each is a DOUBLE PRECISION array on the GPU, dimension (LDDA,N). On entry, each pointer is an MbyN matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. 
[in]  ldda  INTEGER The leading dimension of each array A. LDDA >= max(1,M). 
[out]  dipiv_array  Array of pointers, dimension (batchCount), for corresponding matrices. Each is an INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). 
[in,out]  dB_array  Array of pointers, dimension (batchCount). Each is a DOUBLE PRECISION array on the GPU, dimension (LDDB,N). On entry, each pointer is an right hand side matrix B. On exit, each pointer is the solution matrix X. 
[in]  lddb  INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[in]  batchCount  INTEGER The number of matrices to operate on. 
[in]  queue  magma_queue_t Queue to execute in. 
magma_int_t magma_sgetrs_batched  (  magma_trans_t  trans, 
magma_int_t  n,  
magma_int_t  nrhs,  
float **  dA_array,  
magma_int_t  ldda,  
magma_int_t **  dipiv_array,  
float **  dB_array,  
magma_int_t  lddb,  
magma_int_t  batchCount,  
magma_queue_t  queue  
) 
SGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general NbyN matrix A using the LU factorization computed by SGETRF.
This is a batched version that solves batchCount NbyN matrices in parallel. dA, dB, and ipiv become arrays with one entry per matrix.
[in]  trans  magma_trans_t Specifies the form of the system of equations:

[in]  n  INTEGER The order of the matrix A. N >= 0. 
[in]  nrhs  INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. 
[in,out]  dA_array  Array of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDA,N). On entry, each pointer is an MbyN matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. 
[in]  ldda  INTEGER The leading dimension of each array A. LDDA >= max(1,M). 
[out]  dipiv_array  Array of pointers, dimension (batchCount), for corresponding matrices. Each is an INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). 
[in,out]  dB_array  Array of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDB,N). On entry, each pointer is an right hand side matrix B. On exit, each pointer is the solution matrix X. 
[in]  lddb  INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[in]  batchCount  INTEGER The number of matrices to operate on. 
[in]  queue  magma_queue_t Queue to execute in. 
magma_int_t magma_zgetrs_batched  (  magma_trans_t  trans, 
magma_int_t  n,  
magma_int_t  nrhs,  
magmaDoubleComplex **  dA_array,  
magma_int_t  ldda,  
magma_int_t **  dipiv_array,  
magmaDoubleComplex **  dB_array,  
magma_int_t  lddb,  
magma_int_t  batchCount,  
magma_queue_t  queue  
) 
ZGETRS solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general NbyN matrix A using the LU factorization computed by ZGETRF.
This is a batched version that solves batchCount NbyN matrices in parallel. dA, dB, and ipiv become arrays with one entry per matrix.
[in]  trans  magma_trans_t Specifies the form of the system of equations:

[in]  n  INTEGER The order of the matrix A. N >= 0. 
[in]  nrhs  INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. 
[in,out]  dA_array  Array of pointers, dimension (batchCount). Each is a COMPLEX_16 array on the GPU, dimension (LDDA,N). On entry, each pointer is an MbyN matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. 
[in]  ldda  INTEGER The leading dimension of each array A. LDDA >= max(1,M). 
[out]  dipiv_array  Array of pointers, dimension (batchCount), for corresponding matrices. Each is an INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i). 
[in,out]  dB_array  Array of pointers, dimension (batchCount). Each is a COMPLEX_16 array on the GPU, dimension (LDDB,N). On entry, each pointer is an right hand side matrix B. On exit, each pointer is the solution matrix X. 
[in]  lddb  INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[in]  batchCount  INTEGER The number of matrices to operate on. 
[in]  queue  magma_queue_t Queue to execute in. 