MAGMA  2.7.1
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages
sy/hesv: Solves Ax = b using symmetric/Hermitian indefinite factorization - no pivoting (driver)

Functions

magma_int_t magma_chesv_nopiv_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaFloatComplex_ptr dB, magma_int_t lddb, magma_int_t *info)
 CHESV solves a system of linear equations A * X = B where A is an n-by-n Hermitian matrix and X and B are n-by-nrhs matrices. More...
 
magma_int_t magma_dsysv_nopiv_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t *info)
 DSYSV solves a system of linear equations A * X = B where A is an n-by-n symmetric matrix and X and B are n-by-nrhs matrices. More...
 
magma_int_t magma_ssysv_nopiv_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info)
 SSYSV solves a system of linear equations A * X = B where A is an n-by-n symmetric matrix and X and B are n-by-nrhs matrices. More...
 
magma_int_t magma_zhesv_nopiv_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magmaDoubleComplex_ptr dB, magma_int_t lddb, magma_int_t *info)
 ZHESV solves a system of linear equations A * X = B where A is an n-by-n Hermitian matrix and X and B are n-by-nrhs matrices. More...
 

Detailed Description

Function Documentation

magma_int_t magma_chesv_nopiv_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magma_int_t  nrhs,
magmaFloatComplex_ptr  dA,
magma_int_t  ldda,
magmaFloatComplex_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

CHESV solves a system of linear equations A * X = B where A is an n-by-n Hermitian matrix and X and B are n-by-nrhs matrices.

The LU decomposition with no pivoting is used to factor A as: A = U^H * D * U, if UPLO = MagmaUpper, or A = L * D * L^H, if UPLO = MagmaLower, where U is an upper triangular matrix, L is lower triangular, and D is a diagonal matrix. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. n >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. nrhs >= 0.
[in,out]dACOMPLEX array, dimension (ldda,n). On entry, the n-by-n matrix to be factored. On exit, the factors L/U and the diagonal D from the factorization.
[in]lddaINTEGER The leading dimension of the array A. ldda >= max(1,n).
[in,out]dBCOMPLEX array, dimension (lddb,nrhs) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. lddb >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_dsysv_nopiv_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magma_int_t  nrhs,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

DSYSV solves a system of linear equations A * X = B where A is an n-by-n symmetric matrix and X and B are n-by-nrhs matrices.

The LU decomposition with no pivoting is used to factor A as: A = U^H * D * U, if UPLO = MagmaUpper, or A = L * D * L^H, if UPLO = MagmaLower, where U is an upper triangular matrix, L is lower triangular, and D is a diagonal matrix. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. n >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. nrhs >= 0.
[in,out]dADOUBLE PRECISION array, dimension (ldda,n). On entry, the n-by-n matrix to be factored. On exit, the factors L/U and the diagonal D from the factorization.
[in]lddaINTEGER The leading dimension of the array A. ldda >= max(1,n).
[in,out]dBDOUBLE PRECISION array, dimension (lddb,nrhs) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. lddb >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_ssysv_nopiv_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magma_int_t  nrhs,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

SSYSV solves a system of linear equations A * X = B where A is an n-by-n symmetric matrix and X and B are n-by-nrhs matrices.

The LU decomposition with no pivoting is used to factor A as: A = U^H * D * U, if UPLO = MagmaUpper, or A = L * D * L^H, if UPLO = MagmaLower, where U is an upper triangular matrix, L is lower triangular, and D is a diagonal matrix. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. n >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. nrhs >= 0.
[in,out]dAREAL array, dimension (ldda,n). On entry, the n-by-n matrix to be factored. On exit, the factors L/U and the diagonal D from the factorization.
[in]lddaINTEGER The leading dimension of the array A. ldda >= max(1,n).
[in,out]dBREAL array, dimension (lddb,nrhs) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. lddb >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_zhesv_nopiv_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magma_int_t  nrhs,
magmaDoubleComplex_ptr  dA,
magma_int_t  ldda,
magmaDoubleComplex_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

ZHESV solves a system of linear equations A * X = B where A is an n-by-n Hermitian matrix and X and B are n-by-nrhs matrices.

The LU decomposition with no pivoting is used to factor A as: A = U^H * D * U, if UPLO = MagmaUpper, or A = L * D * L^H, if UPLO = MagmaLower, where U is an upper triangular matrix, L is lower triangular, and D is a diagonal matrix. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. n >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. nrhs >= 0.
[in,out]dACOMPLEX_16 array, dimension (ldda,n). On entry, the n-by-n matrix to be factored. On exit, the factors L/U and the diagonal D from the factorization.
[in]lddaINTEGER The leading dimension of the array A. ldda >= max(1,n).
[in,out]dBCOMPLEX_16 array, dimension (lddb,nrhs) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. lddb >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value