MAGMA  2.3.0
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages
or/unghr: Generate Q from Hessenberg reduction

Functions

magma_int_t magma_cunghr (magma_int_t n, magma_int_t ilo, magma_int_t ihi, magmaFloatComplex *A, magma_int_t lda, magmaFloatComplex *tau, magmaFloatComplex_ptr dT, magma_int_t nb, magma_int_t *info)
 CUNGHR generates a COMPLEX unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by CGEHRD: More...
 
magma_int_t magma_cunghr_m (magma_int_t n, magma_int_t ilo, magma_int_t ihi, magmaFloatComplex *A, magma_int_t lda, magmaFloatComplex *tau, magmaFloatComplex *T, magma_int_t nb, magma_int_t *info)
 CUNGHR generates a COMPLEX unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by CGEHRD: More...
 
magma_int_t magma_dorghr (magma_int_t n, magma_int_t ilo, magma_int_t ihi, double *A, magma_int_t lda, double *tau, magmaDouble_ptr dT, magma_int_t nb, magma_int_t *info)
 DORGHR generates a DOUBLE PRECISION orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by DGEHRD: More...
 
magma_int_t magma_dorghr_m (magma_int_t n, magma_int_t ilo, magma_int_t ihi, double *A, magma_int_t lda, double *tau, double *T, magma_int_t nb, magma_int_t *info)
 DORGHR generates a DOUBLE PRECISION orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by DGEHRD: More...
 
magma_int_t magma_sorghr (magma_int_t n, magma_int_t ilo, magma_int_t ihi, float *A, magma_int_t lda, float *tau, magmaFloat_ptr dT, magma_int_t nb, magma_int_t *info)
 SORGHR generates a REAL orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by SGEHRD: More...
 
magma_int_t magma_sorghr_m (magma_int_t n, magma_int_t ilo, magma_int_t ihi, float *A, magma_int_t lda, float *tau, float *T, magma_int_t nb, magma_int_t *info)
 SORGHR generates a REAL orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by SGEHRD: More...
 
magma_int_t magma_zunghr (magma_int_t n, magma_int_t ilo, magma_int_t ihi, magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *tau, magmaDoubleComplex_ptr dT, magma_int_t nb, magma_int_t *info)
 ZUNGHR generates a COMPLEX_16 unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by ZGEHRD: More...
 
magma_int_t magma_zunghr_m (magma_int_t n, magma_int_t ilo, magma_int_t ihi, magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *tau, magmaDoubleComplex *T, magma_int_t nb, magma_int_t *info)
 ZUNGHR generates a COMPLEX_16 unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by ZGEHRD: More...
 

Detailed Description

Function Documentation

magma_int_t magma_cunghr ( magma_int_t  n,
magma_int_t  ilo,
magma_int_t  ihi,
magmaFloatComplex *  A,
magma_int_t  lda,
magmaFloatComplex *  tau,
magmaFloatComplex_ptr  dT,
magma_int_t  nb,
magma_int_t *  info 
)

CUNGHR generates a COMPLEX unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by CGEHRD:

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Parameters
[in]nINTEGER The order of the matrix Q. N >= 0.
[in]iloINTEGER
[in]ihiINTEGER ILO and IHI must have the same values as in the previous call of CGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
[in,out]ACOMPLEX array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by CGEHRD. On exit, the N-by-N unitary matrix Q.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[in]tauCOMPLEX array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGEHRD.
[in]dTCOMPLEX array on the GPU device. DT contains the T matrices used in blocking the elementary reflectors H(i), e.g., this can be the 9th argument of magma_cgehrd.
[in]nbINTEGER This is the block size used in CGEHRD, and correspondingly the size of the T matrices, used in the factorization, and stored in DT.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_cunghr_m ( magma_int_t  n,
magma_int_t  ilo,
magma_int_t  ihi,
magmaFloatComplex *  A,
magma_int_t  lda,
magmaFloatComplex *  tau,
magmaFloatComplex *  T,
magma_int_t  nb,
magma_int_t *  info 
)

CUNGHR generates a COMPLEX unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by CGEHRD:

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Parameters
[in]nINTEGER The order of the matrix Q. N >= 0.
[in]iloINTEGER
[in]ihiINTEGER ILO and IHI must have the same values as in the previous call of CGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
[in,out]ACOMPLEX array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by CGEHRD. On exit, the N-by-N unitary matrix Q.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[in]tauCOMPLEX array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGEHRD.
[in]TCOMPLEX array on the GPU device. T contains the T matrices used in blocking the elementary reflectors H(i), e.g., this can be the 9th argument of magma_cgehrd.
[in]nbINTEGER This is the block size used in CGEHRD, and correspondingly the size of the T matrices, used in the factorization, and stored in T.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_dorghr ( magma_int_t  n,
magma_int_t  ilo,
magma_int_t  ihi,
double *  A,
magma_int_t  lda,
double *  tau,
magmaDouble_ptr  dT,
magma_int_t  nb,
magma_int_t *  info 
)

DORGHR generates a DOUBLE PRECISION orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by DGEHRD:

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Parameters
[in]nINTEGER The order of the matrix Q. N >= 0.
[in]iloINTEGER
[in]ihiINTEGER ILO and IHI must have the same values as in the previous call of DGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
[in,out]ADOUBLE PRECISION array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by DGEHRD. On exit, the N-by-N orthogonal matrix Q.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[in]tauDOUBLE PRECISION array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEHRD.
[in]dTDOUBLE PRECISION array on the GPU device. DT contains the T matrices used in blocking the elementary reflectors H(i), e.g., this can be the 9th argument of magma_dgehrd.
[in]nbINTEGER This is the block size used in DGEHRD, and correspondingly the size of the T matrices, used in the factorization, and stored in DT.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_dorghr_m ( magma_int_t  n,
magma_int_t  ilo,
magma_int_t  ihi,
double *  A,
magma_int_t  lda,
double *  tau,
double *  T,
magma_int_t  nb,
magma_int_t *  info 
)

DORGHR generates a DOUBLE PRECISION orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by DGEHRD:

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Parameters
[in]nINTEGER The order of the matrix Q. N >= 0.
[in]iloINTEGER
[in]ihiINTEGER ILO and IHI must have the same values as in the previous call of DGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
[in,out]ADOUBLE PRECISION array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by DGEHRD. On exit, the N-by-N orthogonal matrix Q.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[in]tauDOUBLE PRECISION array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEHRD.
[in]TDOUBLE PRECISION array on the GPU device. T contains the T matrices used in blocking the elementary reflectors H(i), e.g., this can be the 9th argument of magma_dgehrd.
[in]nbINTEGER This is the block size used in DGEHRD, and correspondingly the size of the T matrices, used in the factorization, and stored in T.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_sorghr ( magma_int_t  n,
magma_int_t  ilo,
magma_int_t  ihi,
float *  A,
magma_int_t  lda,
float *  tau,
magmaFloat_ptr  dT,
magma_int_t  nb,
magma_int_t *  info 
)

SORGHR generates a REAL orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by SGEHRD:

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Parameters
[in]nINTEGER The order of the matrix Q. N >= 0.
[in]iloINTEGER
[in]ihiINTEGER ILO and IHI must have the same values as in the previous call of SGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
[in,out]AREAL array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by SGEHRD. On exit, the N-by-N orthogonal matrix Q.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[in]tauREAL array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGEHRD.
[in]dTREAL array on the GPU device. DT contains the T matrices used in blocking the elementary reflectors H(i), e.g., this can be the 9th argument of magma_sgehrd.
[in]nbINTEGER This is the block size used in SGEHRD, and correspondingly the size of the T matrices, used in the factorization, and stored in DT.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_sorghr_m ( magma_int_t  n,
magma_int_t  ilo,
magma_int_t  ihi,
float *  A,
magma_int_t  lda,
float *  tau,
float *  T,
magma_int_t  nb,
magma_int_t *  info 
)

SORGHR generates a REAL orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by SGEHRD:

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Parameters
[in]nINTEGER The order of the matrix Q. N >= 0.
[in]iloINTEGER
[in]ihiINTEGER ILO and IHI must have the same values as in the previous call of SGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
[in,out]AREAL array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by SGEHRD. On exit, the N-by-N orthogonal matrix Q.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[in]tauREAL array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGEHRD.
[in]TREAL array on the GPU device. T contains the T matrices used in blocking the elementary reflectors H(i), e.g., this can be the 9th argument of magma_sgehrd.
[in]nbINTEGER This is the block size used in SGEHRD, and correspondingly the size of the T matrices, used in the factorization, and stored in T.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_zunghr ( magma_int_t  n,
magma_int_t  ilo,
magma_int_t  ihi,
magmaDoubleComplex *  A,
magma_int_t  lda,
magmaDoubleComplex *  tau,
magmaDoubleComplex_ptr  dT,
magma_int_t  nb,
magma_int_t *  info 
)

ZUNGHR generates a COMPLEX_16 unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by ZGEHRD:

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Parameters
[in]nINTEGER The order of the matrix Q. N >= 0.
[in]iloINTEGER
[in]ihiINTEGER ILO and IHI must have the same values as in the previous call of ZGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
[in,out]ACOMPLEX_16 array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by ZGEHRD. On exit, the N-by-N unitary matrix Q.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[in]tauCOMPLEX_16 array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZGEHRD.
[in]dTCOMPLEX_16 array on the GPU device. DT contains the T matrices used in blocking the elementary reflectors H(i), e.g., this can be the 9th argument of magma_zgehrd.
[in]nbINTEGER This is the block size used in ZGEHRD, and correspondingly the size of the T matrices, used in the factorization, and stored in DT.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_zunghr_m ( magma_int_t  n,
magma_int_t  ilo,
magma_int_t  ihi,
magmaDoubleComplex *  A,
magma_int_t  lda,
magmaDoubleComplex *  tau,
magmaDoubleComplex *  T,
magma_int_t  nb,
magma_int_t *  info 
)

ZUNGHR generates a COMPLEX_16 unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by ZGEHRD:

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Parameters
[in]nINTEGER The order of the matrix Q. N >= 0.
[in]iloINTEGER
[in]ihiINTEGER ILO and IHI must have the same values as in the previous call of ZGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
[in,out]ACOMPLEX_16 array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by ZGEHRD. On exit, the N-by-N unitary matrix Q.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[in]tauCOMPLEX_16 array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZGEHRD.
[in]TCOMPLEX_16 array on the GPU device. T contains the T matrices used in blocking the elementary reflectors H(i), e.g., this can be the 9th argument of magma_zgehrd.
[in]nbINTEGER This is the block size used in ZGEHRD, and correspondingly the size of the T matrices, used in the factorization, and stored in T.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value