
Power-aware Computing: Measurement, Control,
and Performance Analysis for Intel Xeon Phi

Azzam Haidar∗, Heike Jagode∗, Asim YarKhan∗, Phil Vaccaro∗, Stanimire Tomov∗, Jack Dongarra∗†‡

{haidar|jagode|yarkhan|tomov|dongarra}@icl.utk.edu,
∗Innovative Computing Laboratory (ICL), University of Tennessee, Knoxville, USA

†Oak Ridge National Laboratory, USA
‡University of Manchester, UK

Abstract— The emergence of power efficiency as a primary
constraint in processor and system designs poses new challenges
concerning power and energy awareness for numerical libraries
and scientific applications. Power consumption also plays a major
role in the design of data centers in particular for peta- and exa-
scale systems. Understanding and improving the energy efficiency
of numerical simulation becomes very crucial.

We present a detailed study and investigation toward control-
ling power usage and exploring how different power caps affect
the performance of numerical algorithms with different computa-
tional intensities, and determine the impact and correlation with
performance of scientific applications.

Our analyses is performed using a set of representatives
kernels, as well as many highly used scientific benchmarks. We
quantify a number of power and performance measurements,
and draw observations and conclusions that can be viewed
as a roadmap toward achieving energy efficiency computing
algorithms.

I. INTRODUCTION

Power, energy, and temperature concerns have become major
factors influencing the designs of today’s processors. These
concerns have led to the stagnation of CPU clock frequencies
and to the reliance on parallelism—at both hardware and
software level—for future performance and power efficiency
increases. Hardware accelerated computing systems (e.g.,
GPUs, accelerators) have drawn the attention of researchers
with designs based on many low-frequency cores that obtain
tremendous computational power and high memory bandwidth.
At the same time, it has become important to not only
achieve high performance but also manage power usage, for
example, using a metric measuring the number of floating point
operations (flops) per Watt (W).

While hardware advancements are important, the software
development of numerical libraries that are power and energy-
aware is also becoming of high interest, and may be even
more important. Indeed, although some hardware setups can
be a few times more power efficient than others, the software
design can bring more than an order of magnitude improvement
in addition to the hardware. A necessary step toward energy
efficiency is the ability to easily measure power and energy
consumption, and determine the correlation with performance.

In this paper, we use the PAPI library that provides a generic,
portable interface for the hardware performance counters
available on all modern CPUs and other components of
interest that are scattered across the compute system. All

our experiments are set up and executed on Intel’s Xeon Phi
Knights Landing (KNL) architecture. The Knights Landing
processor demonstrates many of the interesting architectural
characteristics of the newer many-core architectures, with a
deeper hierarchy of explicit memory modules and multiple
modes of configuration. Our analysis is performed using Dense
Linear Algebra (DLA) kernels, specifically BLAS (Basic Linear
Algebra Subroutine) kernels.

In order to measure the relationship between energy con-
sumption and attained performance for algorithms with different
complexities, we run experiments with representative BLAS
kernels that have different computational intensities. We use
the newly developed power capping functionality of PAPI
to examine the effects of managing power on algorithmic
performance.

II. CONTRIBUTIONS

The contributions of this work are in the areas of power
management and in the analysis of the power efficiency of
compute/memory bound computational kernels in the context
of new high-bandwidth memory and many-core processor
architectures. The contributions described in this work are:

• A novel component (powercap) in the PAPI performance
library for power management. This new PAPI powercap
component has an active interface that allows writing
values in addition to reading them. This is a significant
change from the prior PAPI RAPL component that had an
entirely passive measurement interface to read information
and events. Having this power capping functionality
available through a common interface like PAPI provides
portability and is beneficial to many scientific application
developers, independent of whether they use PAPI directly,
or via 3rd-party performance toolkits.

• An detailed study of the usage of the powercap component,
extending the notion of performance monitoring to include
power capping capabilities. This will enable the joint
monitoring of hardware performance events and power
information, together with the power capping functionality,
in a uniform way through one consistent PAPI interface.

• A study of the correlation between power usage and
performance for kernels that are representative for a
wide range of real scientific applications. This provides
a clear understanding about the factors that contribute to

Fig. 1. Physical memory organization of Intel’s Knights Landing processors.

energy saving and performance. We are using the newly
implemented PAPI power control mechanism because we
are not only interested in reducing power usage but, more
importantly, we are interested in exploring energy savings
while keeping the execution time constant (ideally).

• This is the first paper that evaluates the power efficiency
as related to the algorithmic intensity on the KNL architec-
ture, allowing researchers to understand and predict what
to expect from using high-bandwidth MCDRAM memory
versus standard DDR4 memory, and from managing power
on this architecture.

III. HARDWARE DESCRIPTION

Memory bandwidth in computing systems is one of the
common bottlenecks for performance in computational appli-
cations. The memory hierarchy has become increasingly more
complex, with the standard cache hierarchy being enhanced
with connectivity between multiple memory devices. A specific
example of current memory architectures is provided by the
many-core Intel Xeon Phi Knights Landing (KNL) processor.
It offers 16 GB of high-bandwidth memory (HBM) based on
Multi-Channel Dynamic Random Access Memory (MCDRAM)
with a bandwidth of around 425 GB/s, in addition to the more
standard DDR4 memory with a bandwidth of about 90 GB/s.
It is important to note that the high bandwidth MCDRAM
resides on the CPU chip (a.k.a. on-package memory), and is
distinct from the traditional DDR4 memory that is system
memory and does not reside on the CPU chip. Figure 1 shows
the physical memory organization of the Intel KNL processors.
The MCDRAM can be configured in BIOS in one of three
different usage modes. In flat mode, the entire MCDRAM
is visible to the operating system as addressable memory
that is available via a NUMA node. Memory allocations and
initialization can be done specifically in the MCDRAM. These
memory allocations are treated similarly to standard DDR4
memory allocations and will be cached by the L2 cache as
needed. However, there are other ways of configuring this high
bandwidth MCDRAM memory: for example, as a large cache
between L2 cache and the DDR4 memory, which is referred
to as cache mode. In this case, the MCDRAM is not visible
to the OS, but is transparently used as a cache. A third way
is referred to as hybrid mode where a portion of MCDRAM

is used as addressable memory and the rest is used as cache.
This allows for locating frequently written data objects to
MCDRAM, and relegating read-mostly data objects to DDR4
memory. An application would need to profile its data usage
with the memory access counters to choose the appropriate
usage model. We conducted experiments and performance
analysis study on the three different MCDRAM configurations
on the KNL. We used the Intel C compiler from the Intel
Composer XE 2016 suite, and the linear algebra routines from
the Intel Math Kernel Library, MKL [7], optimized for the
Intel Knights Landing architecture.

IV. REPRESENTATIVE KERNELS

In order to study and analyze the effect of real applications
on power consumption and energy requirements, we chose
kernels that can be found in high performance computing (HPC)
applications and that can be distinctly classified through their
computational intensity. We decided to perform an extensive
study over linear algebra routines that are representative to
many methods (such as, Jacobi iteration, Gauss-Seidel methods,
Newton-Raphson, etc) used in real scientific applications,
as for example in climate modeling, computational fluid
dynamics simulations, material science simulations. The BLAS
or Basic Linear Algebra Subprograms are a specification for
a fundamental set of low-level linear algebra operations that
are important for a wide variety of algorithms and scientific
applications. BLAS operations are categorized into three levels
by the type of operation. Level 1 addresses scalar and vector
operations, Level 2 addresses matrix-vector operations, and
Level 3 addressed matrix-matrix operations. The BLAS routines
provide an excellent route to examine power and performance
characteristics given that they are of high importance to
scientific computations, well defined and well understood
operations, their implementations are highly optimized by
vendor libraries, and they provides different memory footprint,
performance and power characteristics. The Level 1 and
Level 2 BLAS routines belong to the “memory-bound class”
of functions and thus provide similar behavior in term of
performance and power requirement while the Level 3 BLAS
routines belong to the “compute intensive class” of functions.
We present the analysis and study for the compute intensive
routine dgemm, and the memory bound routine dgemv as
they demonstrate a wide range of computational intensities.
Our goal is to find answers to the following questions: (1)
What is the performance that can be attained, (2) Can power
requirement be predicted for a real application, and (3) What
energy requirement should we expect from applications?

V. PAPI: THE PERFORMANCE API

The PAPI performance monitoring library provides a co-
herent methodology and standardization layer to performance
counter information for varied hardware and software compo-
nents, including CPUs [16], GPUs [11], memory, networks [4],
[13], I/O systems [16] and power interfaces [8], [12], as
well as virtual cloud environments [9]. PAPI can be used
independently as a performance monitoring library and tool

for application analysis. However, PAPI finds its greatest
utility as middleware component for a number of third-party
profiling, tracing, and sampling toolkits (e.g., CrayPat [5],
HPCToolkit [1], Scalasca [6], Score-P [14], TAU [15], Vam-
pir [2], PerfExpert [3]), making it the de facto standard for
performance counter analysis. As the middleware, PAPI handles
the details for each hardware component in order to provide a
consistent API platform to the higher-level toolkits, as well as
operating system-independent access to performance counters
within CPUs, GPUs, and the system as a whole.

A. Power Monitoring Capabilities

Energy efficiency has been identified as a major concern
for extreme-scale platforms [10], and PAPI offers a number
of components for different architectures that allows for
transparent monitoring of power usage and energy consumption
through different interfaces such as the Intel RAPL (Running
Average Power Limit) interface, the libmsr [17] library, the
MicAccess API, the high speed power measurement API on
IBM Blue Gene/Q systems called EMON, and the NVML
(NVIDIA Management Library) interface.

We build on this work and extend PAPI by incorporating
power monitoring and power capping functionalities for recent
Intel CPUs via the Linux powercap interface. The newly
developed PAPI powercap component is publicly available
since the PAPI 5.5.0 release. The addition of power controlling
through PAPI has unlocked new opportunities for managing
energy efficiency of applications. For instance, it can determine
the choice between alternative algorithmic implementations of
an operation, leading to the design of energy-efficient algo-
rithms [8], [10]. Even though power optimization opportunities
may not occur with every algorithm, PAPI can provide the
information to detect the existence of such opportunities (i.e.,
power/time consumed by various tasks), and, furthermore, PAPI
provides the API to allow the application to control the power
on supported hardware.

The two power domains supported on Intel Xeon Phi
Knights Landing processor (KNL) are (1) power for the entire
package (PACKAGE_ENERGY), and (2) power for the memory
subsystem (DRAM_ENERGY). As mentioned in section III, the
MCDRAM is an on-package memory that resides on the CPU
chip, while the DDR4 memory modules are not installed on
the CPU chip. For that reason, energy consumption of the
MCDRAM is accounted for in the PACKAGE_ENERGY domain
only, while DDR4 is accounted for in DRAM_ENERGY domain.

VI. DISCUSSION

We run an extensive set of experiments using the powercap
component from PAPI. Figures 2 and 3 illustrate the perfor-
mance results and the power consumption of both the package
and the memory for the dgemm and dgemv kernels on the
Intel Xeon Phi Knight Landing (KNL 7250). For each of the
BLAS routines, we examined the behavior of the following
four types of memory/data-allocation configurations in our
experiments. The KNL is configured in FLAT or HYBRID
mode, and for each of these memory modes the data can be

allocated in the fast MCDRAM memory or in the standard
DDR4 memory.

A. Study of the dgemm kernel behavior

We begin this discussion with the compute intensive dgemm
kernel. In order to condense a large amount of information, in
Figure 2 we represent the performance achieved in GFlop/s
(left vertical axis) and the average power in Watt (right vertical
axis). The size of the matrices used in the dgemm computation
varies from 2,000 to 18,000 (i.e., 2,000, 4,000, ..., 18,000).

In Figure 2a we show the measurements when the KNL
is booted in HYBRID mode and the data is allocated in the
DDR4 while Figure 2b illustrate the measurments when the data
is allocated in MCDRAM. The performance of the dgemm
routine in HYBRID mode is not affected by where the data
is allocated. Since the dgemm is a compute intensive routine,
once a block of data is brought from the DDR4 to the cache
it is kept there until it is no longer needed. As a results, the
data transfer from the DDR4 is minimal (probably once per
block) and the performance is similar to the one obtained
when the data is allocated in the high speed MCDRAM. In
Figure 2a the DRAM memory power consumption is slightly
higher than the one of Figure 2b because the data originates
in DDR memory and additional power is used to transfer it
to the cache. Once the data is in cache, there will be enough
available data to satisfy all the cores. For that reason, both the
DDR4 and MCDRAM data allocation experiments will keep
all the cores busy and will have roughly the same package
power consumption.

In Figures 2c and 2d, we did similar experiments and
measurements for dgemm when the KNL was booted in
FLAT mode. The FLAT mode does not use the MCDRAM
as a cache, but as physical addressable memory space. In
term of package power consumption, the behavior observed
for the FLAT mode is similar to the one observed with the
HYBRID mode for both memory options. This was expected
since the dgemm is a compute intensive routine that relies
on the efficiency of the cores rather than the speed of data
transfer. The DDR4 power usage in Figure 2c is slightly higher
than the one in Figure 2a because the data may be moved
multiple times to/from the DDR4 while it will be held in the
8GB of MCDRAM-cache when the KNL is in HYBRID mode.
The DDR4 power consumption for the MCDRAM option
(Figure 2d) is minimal since no data is allocated there.

The lesson learned is, for compute intensive kernels, like
dgemm, in HYBRID mode, it is better to allocate in the
MCDRAM (if the data fits) in order to avoid the power
requirement of the DDR4 data movement without any loss in
term of performance. For the FLAT mode, it is clearly better to
allocate in MCDRAM (16GB). If the data is too large to fit in
the MCDRAM, it is advised to switch the device to HYBRID
mode to avoid getting slower performance at higher power
consumption.

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Performance DGEMM

(a) HYBRID mode: dgemm: data allocated on DDR4.
Matrix size

2k 4k 6k 8k 10k 12k 14k 16k 18k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Performance DGEMM

(b) HYBRID mode: dgemm: data allocated on MCDRAM.

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Performance DGEMM

(c) FLAT mode: dgemm: data allocated on DDR4.
Matrix size

2k 4k 6k 8k 10k 12k 14k 16k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Performance DGEMM

(d) FLAT mode: dgemm: data allocated on MCDRAM.

Fig. 2. Performance (GFlop/s on left axis) and average power (Watt on right axis) measurements of the Level 3 BLAS dgemm routine when the KNL is in
either HYBRID or FLAT mode. The dgemm kernel is run successively for different matrix sizes.

B. Study of the dgemv kernel behavior

Bandwidth-limited applications are characterized by memory-
bound algorithms that perform relatively few FLOPs per
memory access. For these type of routines (low arithmetic
intensity routines), the floating-point capabilities of a processor
are generally not important, however, the memory bandwidth
limits the application’s performance. We created a set of exper-
iments that is similar to our previous dgemm investigation, to
analyze the power and the performance behavior of the memory
bound dgemv kernel. Here, we expect different behavior when
allocating data using the two different memory areas, the
MCDRAM or the DDR4, which have very different bandwidths.
We expect these differences to be illustrated for both KNL
booting models (HYBRID and FLAT).

Figures 3a and 3b illustrate our measurements for the
HYBRID mode. Because the kernel is memory-bound, there are
limited benefits from cache reuse or from having blocks of data
remain in fast memory. The performance drops dramatically
between the two storage options. When allocating data in
MCDRAM, the performance is about 3 times higher than
when data is allocated in the DDR4. That is as predicted since
the MCDRAM provides a bandwidth of about 400 GB/s versus

around GB/s for the DDR4. When the data is allocated in the
DDR4, we can see a lower level of package power consumption
than when data is in the MCDRAM. This can be explained by
the fact that when data is in the MCDRAM, the elapsed time
required to bring the data to the computational cores is less
than when the data is in the DDR4, thus, within an interval
of time the MCDRAM option brought more data allowing
more work bringing up the power consumption. We can see
that in the MCDRAM option the power can range between
200-210 Watt while it is about 180-190 Watt for the DDR4
option. In term of total energy, once we add the power of
the DRAM to the power of the package, both MCDRAM and
DDR4 consume about the same amount of power with 3X
speedup in performance when using the MCDRAM option.

Figures 3c and 3d illustrate our measurements for the FLAT
mode. The same observations as with the HYBRID mode
can be reported here, except that for the DDR4 option the
performance is about 4 times slower than for the MCDRAM
option and slightly lower than its counterpart in HYBRID mode
(figure 3a). We believe that is because in HYBRID mode both
of the vectors x and y can be held in the cache portion of the
MCDRAM.

The lesson learned is, for both power and performance

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

10

20

30

40

50

60

70

80

90

100
Performance DGEMV

(a) HYBRID mode: dgemv: data allocated on DDR4.
Matrix size

2k 4k 6k 8k 10k 12k 14k 16k 18k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

10

20

30

40

50

60

70

80

90

100
Performance DGEMV

(b) HYBRID mode: dgemv: data allocated on MCDRAM.

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

10

20

30

40

50

60

70

80

90

100
Performance DGEMV

(c) FLAT mode: dgemv: data allocated on DDR4.
Matrix size

2k 4k 6k 8k 10k 12k 14k 16k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

10

20

30

40

50

60

70

80

90

100
Performance DGEMV

(d) FLAT mode: dgemv: data allocated on MCDRAM.

Fig. 3. Performance (GFlop/s on left axis) and average power (Watt on right axis) measurements of the BLAS-2 dgemv routine when the KNL is in either
HYBRID or FLAT mode. The dgemv kernel is run successively for different problem sizes.

optimization of memory-bound algorithms the MCDRAM
option is always preferred, and a speedup of 3-4 times can be
observed. If the data is relatively small (8GB<data<16GB)
use FLAT mode and allocate the data in MCDRAM. Otherwise,
if the data is large or needs to be stored in the DDR4,
the HYBRID mode is preferable with a slight performance
improvement of approx. 10%.

C. Power Capping as a Strategy for Improved Energy Efficiency

In this section we present the results of various power
capping experiments. The objective is to utilize power control
mechanisms in an effort to save energy by keeping the execution
time constant (ideally).

Power usage and energy consumption is a very crucial topic
in all scientific domains, in particular for high performance
computing and big data centers. Energy efficiency becomes
a major constraint for a computing center and it directly
influences the operational budget. Data centers host hundreds
of thousands of multi-core servers that provide many of
our real life online services such as social networks, maps,
big-data analytics, to name but a few. These centers host a
variety of applications that are constrained by memory-bound
operations rather than by processor performance and thus it

might be advantageous to throttle back the processor without
affecting overall performance. Therefore, energy efficiency
can be increased with the use of power capping techniques,

100 120 140 160 180 200 215

G
flo

ps
/W

at
t

0

2

4

6

8

10
DGEMM Performance per Watt

Hybrid-DDR4
Hybrid-MCDRAM

Power capping (Watts)
100 120 140 160 180 200 215

G
flo

ps
/W

at
t

0

2

4

6

8

10
Flat-DDR4
Flat-MCDRAM

Fig. 4. Investigation of the energy efficiency of the BLAS-3 dgemm routine for
various power caps. Performance is displayed in Gflops per Watt. Experiments
are run on the KNL 7250 in HYBRID and FLAT mode.

which will result in reduced costs of operation. Moreover,
large scale scientific applications running on HPC systems
consist of different types of algorithms that can be compute or
memory intensive and have different performance requirements.
In this section, we focus our attention on studying the behavior
of different compute or memory intensive benchmarks, and
investigate how we can increase their productivity without
decreasing their performance.

The new PAPI release provides the new component that
enables transparent read and write access to power/energy
information and controls through a simple and consistent
interface. This PAPI powercap component uses the Linux
powercap interface under the covers, which was designed to
expose power constraint values for various Intel processors.
Each processor has a different set of power constraints available
via this Linux interface, and PAPI will only show the available
constraints for the specific system that it is being run on.
We performed extensive power capping studies with the
representative linear algebra kernels to find good trade-off
configurations.

Figures 4, 5 show the energy efficiency (performance per
watt) for the BLAS kernels dgemm, dgemv respectively,
computed on the Intel Xeon Phi Knights Landing processor.
The energy efficiency was computed based on the asymptotic
behavior of each routine, meaning when the performance of the
routine reached around 90% of its practical peak. The energy
efficiency is displayed in Gflops per Watt for various power
capping values, ranging from 215 Watt (default power setting
on the KNL) down to 100 Watt. For the power readings and
writings, we are using the PAPI powercap component and
the measurement utility that ships with the component, using
a sampling rate of 100 milliseconds.

The goal is to investigate which of the BLAS benchmarks
computes in the same amount of time with capped power,
which ultimately results in energy saving. The data is analyzed,
evaluated, and the conclusions are summarized systematically
for each benchmark. In general, power capping appears more

100 120 140 160 180 200 215

G
flo

ps
/W

at
t

0

0.1

0.2

0.3

0.4

0.5
DGEMV Performance per Watt

Hybrid-DDR4
Hybrid-MCDRAM

Power capping (Watts)
100 120 140 160 180 200 215

G
flo

ps
/W

at
t

0

0.1

0.2

0.3

0.4

0.5
Flat-DDR4
Flat-MCDRAM

Fig. 5. Investigation of the energy efficiency of the BLAS-2 dgemv routine for
various power caps. Performance is displayed in Gflops per Watt. Experiments
are run on the KNL 7250 in HYBRID and FLAT mode.

beneficial when we use memory bound, low computational
intensity kernels (like, e.g. dgemv) compared to compute
bound kernels (like, e.g. dgemm).

In Figure 4, we observe that HYBRID mode enables energy
savings by capping the power to either 180 Watt or 200 Watt
for both DDR and MCDRAM option. Capping to 160 Watt
will provide the same energy efficiency as a power of 215
Watt. For FLAT mode we can decrease the power requirements
down to 180 Watt without any energy efficiency loss.

The more interesting energy behavior is observed for the
memory bound routines. Figure 5 shows that we can save energy
and gain performance/Watt by capping to 180 Watt for both
DDR and MCDRAM option. Interestingly, the performance
of the dgemv routine, in term of Gflop/s, is not affected
when we cap to 180 Watt (as shown in Figure 6), meaning
that an algorithm which is memory bound or that relies on
dgemv operations (such as, finite element applications, iterative
solvers like GMRES, conjugate gradient, preconditioning) will
complete its computation within the same elapsed time but at
a lower power. As a result, one can expect a significant energy
saving, approx. 27%.

VII. CONCLUSION

We have used PAPI, with its newly developed powercap
component, to explore the performance and power character-
istics of various DLA kernels on the Intel Xeon Phi Knights
Landing architecture. This exploration provides insights into
how the available memory configurations on the KNL affect
the performance of computation kernels with differing compu-
tational intensities. These insights allowed us to explore power
management and capping strategies matching the computational
intensities which can result in energy savings while keeping
computational time constant.

Taking maximum advantage of the high bandwidth MC-
DRAM on the KNL is vital to achieving high performance
and minimal power consumption, in particular for bandwidth-
sensitive applications. We performed an extensive study of
computational kernels from the highly used BLAS library,
choosing kernels from each of the three BLAS levels in order
to explore the performance and power characteristics of the
system on compute-intensive and memory-bound computations.
We explored the behavior of these kernels using different
booting configurations for the MCDRAM on the KNL, using
different data allocations to discover the best strategy in each
booting scenario.

As a result from our analysis, we can make recommendations
on the data allocation and on the memory mode that should
be used for an application: If the application requires less
than 8 GB, then the developer should allocate the data in the
MCDRAM and the KNL can be used either in HYBRID mode
or FLAT mode. Alternatively, if the data fits into the 16 GB
of MCDRAM then the FLAT mode would be the best choice.
If the data is larger than 16 GB then there are two possible
paths: If the application is compute-intensive then the HYBRID
mode is the best choice. Otherwise, the best path forward is
to identify the memory bound portion of the code and allocate

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

10

20

30

40

50

60

70

80

90

100
hybrid_mode_215Watts_dgemv_MCDRAM

Performance DGEMV

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

10

20

30

40

50

60

70

80

90

100
hybrid_mode_180Watts_dgemv_MCDRAM

Performance DGEMV

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Accelerator Power Usage (PACKAGE)
Memory Power Usage (DDR4)

G
flo

p/
s

0

10

20

30

40

50

60

70

80

90

100
hybrid_mode_160Watts_dgemv_MCDRAM

Performance DGEMV

Fig. 6. Effect of different power caps (215, 180, 160 Watt) on the performance of the BLAS-2 dgemv routine for various problem sizes. Performance is
displayed in Gflops per second. Experiments are run on the KNL 7250 in HYBRID mode.

its data in the MCDRAM. One can use either HYBRID or
FLAT mode based on the amount of memory bound data, that
is, for memory bound data less than 8 GB choose HYBRID,
otherwise choose FLAT mode.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the
National Science Foundation NSF under awards No. 1450429
“Performance Application Programming Interface for Extreme-
scale Environments (PAPI-EX)” and No. 1514286.

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCTOOLKIT: tools for performance
analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience, 22(6):685–701, 2010.

[2] H. Brunst and A. Knüpfer. Vampir. In D. Padua, editor, Encyclopedia
of Parallel Computing, pages 2125–2129. Springer US, 2011.

[3] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne. PerfExpert: An Easy-to-Use Performance Diagnosis Tool for
HPC Applications. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE
Computer Society.

[4] Using the PAPI Cray NPU Component. http://docs.cray.com/books/
S-0046-10//S-0046-10.pdf.

[5] The CrayPat Performance Analysis Tool. http://docs.cray.com/books/
S-2315-50/html-S-2315-50/z1055157958smg.html.

[6] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and
B. Mohr. The Scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience, 22(6):702–719, Apr. 2010.

[7] Intel. Math kernel library. https://software.intel.com/en-us/en-us/
intel-mkl/.

[8] H. Jagode, A. YarKhan, A. Danalis, and J. Dongarra. Power Management
and Event Verification in PAPI. In Tools for High Performance Computing
2015: Proceedings of the 9th International Workshop on Parallel Tools
for High Performance Computing, September 2015, Dresden, Germany,
pages 41–51, Cham, 2016. Springer International Publishing.

[9] M. Johnson, H. Jagode, S. Moore, P. Mucci, J. Nelson, D. Terpstra,
V. Weaver, and T. Mohan. PAPI-V: Performance monitoring for virtual
machines. In Proc of CloudTech-HPC Workshop, Sept. 2012.

[10] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington,
G. Chiu, R. Colwell, W. Dally, J. Dongarra, et al. Top ten exascale
research challenges. DOE ASCAC Subcommittee Report, 2014.

[11] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juck-
eland, R. Dietrich, D. Poole, and C. Lamb. Parallel performance
measurement of heterogeneous parallel systems with gpus. In Proceedings
of the 2011 International Conference on Parallel Processing, ICPP ’11,
pages 176–185, Washington, DC, USA, 2011. IEEE Computer Society.

[12] H. McCraw, J. Ralph, A. Danalis, and J. Dongarra. Power Monitoring with
PAPI for Extreme Scale Architectures and Dataflow-based Programming
Models. In Workshop on Monitoring and Analysis for High Performance
Computing Systems Plus Applications (HPCMASPA 2014), IEEE Cluster
2014, pages 385–391, Sep 2014.

[13] H. McCraw, D. Terpstra, J. Dongarra, K. Davis, and M. R. Beyond
the CPU: Hardware Performance Counter Monitoring on Blue Gene/Q.
In Proceedings of the International Supercomputing Conference 2013,
ISC’13, pages 213–225. Springer, Heidelberg, June 2013.

[14] M. Schlütter, P. Philippen, L. Morin, M. Geimer, and B. Mohr. Profiling
Hybrid HMPP Applications with Score-P on Heterogeneous Hardware.
In Parallel Computing: Accelerating Computational Science and Engi-
neering (CSE), volume 25 of Advances in Parallel Computing, pages
773 – 782. IOS Press, 2014.

[15] S. S. Shende and A. D. Malony. The Tau Parallel Performance System.
Int. J. High Perform. Comput. Appl., 20(2):287–311, May 2006.

[16] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting Performance
Data with PAPI-C. Tools for High Performance Computing 2009, pages
pp. 157–173, 2009.

[17] S. Walker, K. Shoga, B. Rountree, and L. Morita. Libmsr, 2015. https:
//github.com/scalability-llnl/libmsr.

http://docs.cray.com/books/S-0046-10//S-0046-10.pdf
http://docs.cray.com/books/S-0046-10//S-0046-10.pdf
http://docs.cray.com/books/S-2315-50/html-S-2315-50/z1055157958smg.html
http://docs.cray.com/books/S-2315-50/html-S-2315-50/z1055157958smg.html
https://software.intel.com/en-us/en-us/intel-mkl/
https://software.intel.com/en-us/en-us/intel-mkl/
https://github.com/scalability-llnl/libmsr
https://github.com/scalability-llnl/libmsr

	Introduction
	Contributions
	Hardware Description
	Representative Kernels
	PAPI: The Performance API
	Power Monitoring Capabilities

	Discussion
	Study of the dgemm kernel behavior
	Study of the dgemv kernel behavior
	Power Capping as a Strategy for Improved Energy Efficiency

	Conclusion
	References

