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Preface

PLASMA version 1.0 was released in November 2008 as a prototype software providing
proof-of-concept implementation of a linear equations solver based on LU factorization,
SPD linear equations solver based on Cholesky factorization and least squares problem
solver based on QR and LQ factorizations, with support for real arithmetic in double preci-
sion only. The publication of this Users’ Guide coincides with the September 2010 release
of version 2.3 of PLASMA, with the following set of features:

Linear Equation Solvers: Fast routines for solving dense systems of linear equations,
symmetric positive systems of linear equations and least square problems using a
class of tile algorithms for LU, Cholesky, QR and LQ factorizations.

Mixed-Precision Solvers: Mixed-precision routines exploiting the speed advantage of sin-
gle precision by factorizing the matrix in single precision and using iterative refine-
ment to achieve “full” double precision accuracy.

Tall and Skinny Factorization Routines: Fast QR adn LQ factorization routines, closely
related to a class of algorithms known as communication avoiding, for factorizing
matrices of heavily rectangular shape, commonly referred to as tall and skinny ma-
trices.

Q Matrix Generation and Application Routines: Routines for implicit multiplication by
the Q matrix resulting from the QR or LQ factorization (application of the House-
holder reflectors) and routines for explicit generation of the Q matrix (application of
the Householder reflectors to an identity matrix).
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Matrix Inversion Routines: Fast routines for explicitly generating an in-place inverse of
a matrix by pipelining different stages of the computation using a dynamic scheduler
with the capability of data renaming for elimination of anti-dependencies.

Tile Level 3 BLAS Routines: All Level 3 BLAS routines for matrices stored by tiles, the
native storage format of PLASMA.

Layout Translation Routines: Routines for efficient parallel out-of-place translation be-
tween the cannonical column-major layout and the native PLASMA tile layout, as
well as routines for parallel and cache-efficient in-place translation (although more
constrained than the former one).

Multiple Precision Support: Support for real arithmetic and complex arithmetic in sin-
gle precision and double precision (Z, D, C, S). Also, support for mixed-precision
routines in real arithmetic and complex arithmetic (ZC, DS).

Flexible Interfaces: Three different interfaces with different levels of complexity and
user’s controll over the operations: basic interface accepting matrices in cannoni-
cal column-major layout, tile interface accepting matrices in tile layout and tile asyn-
chronous interface accepting matrices in tile layout and providing non-blocking com-
putational calls.

Workspace Allocation Routines: Convenient set of routines to handle workspace alloca-
tion where necessary, e.g., for passing auxiliary data from the factorization routine to
the solve routine. Internal workspace allocation wherever possible.

Rigorous Error Handling: Error codes closely following those returned by LAPACK for
both illegal values of input parameters and numerical defficiencies of the input ma-
trices.

Testing Suite: A set of tests derived from the LAPACK testing suite to exhaustively test
the numerical routines under normal conditions, as well as in the presence of illegal
arguments and numerically deficient matrices. Also a separate set of fast “sanity”
tests.

Timing Suite: A simple set of timing codes for measuring the performance of the basic
interface and the tile interface.

Usage Examples: A set of usage examples for all routines in all precisions, ideal for quick
cutting and pasting into user’s code.

Extensive Documentation: Extensive documentation in the form of PDF manuals (Users’
Guide, Reference Manual, TAU Guide, Contributors’ Guide), condensed ASCII and
HTML files (README, LICENSE, Release Notes), an online API Routine Refer-
ence and an online source code browser.
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Installer: Convenient Python installer for installation of PLASMA and all its software
dependencies, including: BLAS, CBLAS, LAPACK and LAPACK C Wrapper.

The current PLASMA release also implements many important software engineering prac-
tices, including:

• Thread safety,

• Support for Make and CMake build systems,

• Extensive comments in the source code using the Doxygen system,

• Support for multiple Unix OSes, as well as Microsoft Windows through a thin OS
interaction layer,

• Clear software stack built from standard components, such as BLAS, CBLAS, LA-
PACK and LAPACK C Wrapper.
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CHAPTER 1

Essentials

1.1 PLASMA

PLASMA is a software library, currently implemented using the FORTRAN and C pro-
gramming languages, and providing interfaces for FORTRAN and C. It has been designed
to be efficient on homogeneous multicore processors and multi-socket systems of multicore
processors. The name PLASMA is an acronym for Parallel Linear Algebra Software for
Multi-core Architectures.

PLASMA project website is located at:

http://icl.cs.utk.edu/plasma

PLASMA software can be downloaded from:

http://icl.cs.utk.edu/plasma/software/

PLASMA users’ forum is located at:

http://icl.cs.utk.edu/plasma/forum/

and can be used to post general questions and comments as well as to report technical
problems.
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1.2. PROBLEMS THAT PLASMA CAN SOLVE

1.2 Problems that PLASMA Can Solve

PLASMA can solve dense systems of linear equations and linear least squares problems
and associated computations such as matrix factorizations. Unlike LAPACK, currently
PLASMA does not solve eigenvalue or singular value problems and does not support band
matrices. Similarly to LAPACK, PLASMA does not support general sparse matrices. For
all supported types of computation the same functionality is provided for real and complex
matrices in single precision and double precision.

1.3 Computers for which PLASMA is Suitable

PLASMA is designed to give high efficiency on homogeneous multicore processors and
multi-socket systems of multicore processors. As of today, the majority of such systems are
on-chip symmetric multiprocessors with classic super-scalar processors as their building
blocks (x86 and alike) augmented with short-vector SIMD extensions (SSE and alike). A
parallel software project MAGMA (Matrix Algebra on GPU and Multicore Architectures),
is being developed to address the needs of heterogeneous (hybrid) systems, equipped with
hardware accelerators, such as GPUs.

http://icl.cs.utk.edu/magma

The name MAGMA is an acronym for Matrix Algebra on GPU and Multicore Architec-
tures.

1.4 PLASMA versus LAPACK and ScaLAPACK

PLASMA has been designed to supercede LAPACK (and eventually ScaLAPACK), prin-
cipally by restructuring the software to achieve much greater efficiency, where possible,
on modern computers based on multicore processors. PLASMA also relies on new or im-
proved algorithms.

Currently, PLASMA does not serve as a complete replacement of LAPACK due to limited
functionality. Specifically, PLASMA does not support band matrices and does not solve
eigenvalue and singular value problems. At this point, PLASMA does not replace ScaLA-
PACK as software for distributed memory computers, since it only supports shared-memory
machines.
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1.5. ERROR HANDLING

1.5 Error handling

At the highest level (LAPACK interfaces), PLASMA reports errors through the INFO inte-
ger parameter in the same manner as the LAPACK subroutines. INFO< 0 means that there
is an invalid argument in the calling sequence and no computation has been performed;
INFO= 0 means that the computation has been performed and no error has been issued;
while INFO> 0 means that a numerical error has occured (e.g., no convergence in an eigen-
solver) or the input data is (numerically) invalid (e.g., in xPOSV, the input matrix is not
positive definite). In any event, PLASMA returns the same INFO parameter as LAPACK.
When a numerical error is detected (INFO> 0), the computation aborts as soon as possible
which implies that, in this case, two different executions may very well have the current
data in various states. While the output state of LAPACK is predictible and reproducible in
the occurence of a numerical error, the one of PLASMA is not.

1.6 PLASMA and the BLAS

LAPACK routines are written so that as much as possible of the computation is per-
formed by calls to the Basic Linear Algebra Subroutines (BLAS). Highly efficient
machine-specific implementations of the BLAS are available for most modern processors,
including multi-threaded implementations.

The parallel algorithms in PLASMA are built using a small set of sequential routines
as building blocks. These routines are referred to as core BLAS. Ideally, these routines
would be implemented through monolithic machine-specific code, utilizing to the maxi-
mum a single processing core (through the use of short-vector SIMD extensions and appro-
priate cache and register blocking).

However, such machine-specific implementations are extremely labor-intensive and cover-
ing the entire spectrum of available architectures is not feasible. Instead, the core BLAS
routines are built in a somewhat suboptimal fashion, by using the “standard” BLAS rou-
tines as building blocks. For that reason, just like LAPACK, PLASMA requires a highly
optimized implementation of the BLAS in order to deliver good performance.

Although the BLAS are not part of either PLASMA or LAPACK, FORTRAN code for the
BLAS is distributed with LAPACK, or can be obtained separately from Netlib:

http://www.netlib.org/blas/blas.tgz

However, it has to be emphasized that this code is only the “reference implementation” (the
definition of the BLAS) and cannot be expected to deliver good performance. On most
of today’s machines it will deliver performance an order of magnitude lower than that of
optimized BLAS.
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1.7. AVAILABILITY OF PLASMA

For information on available optimized BLAS libraries, as well as other BLAS-related ques-
tions, please refer to the BLAS FAQ:

http://www.netlib.org/blas/faq.html

1.7 Availability of PLASMA

PLASMA is distributed in source code and is, for the most part, meant to be compiled from
source on the host system. In certain cases, a pre-built binary may be provided along with
the source code. Such packages, built by the PLASMA developers, will be provided as
separate archives on the PLASMA download page:

http://icl.cs.utk.edu/plasma/software/

The PLASMA team does not reserve exclusive right to provide such packages. They can
be provided by other individuals or institutions. However, in case of problems with binary
distributions acquired from other places, the provider needs to be asked for support rather
than PLASMA developers.

1.8 Commercial Use of PLASMA

PLASMA is a freely available software package. Thus it can be included in commercial
packages. The PLASMA team asks only that proper credit be given by citing this users’
guide as the official reference for PLASMA.

Like all software, this package is copyrighted. It is not trademarked. However, if modifica-
tions are made that affect the interface, functionality, or accuracy of the resulting software,
the name of the routine should be changed and the modifications to the software should be
noted in the modifier’s documentation.

The PLASMA team will gladly answer questions regarding this software. If modifications
are made to the software, however, it is the responsibility of the individual or institution
who modified the routine to provide support.

1.9 Installation of PLASMA

A PLASMA installer is available at:

http://icl.cs.utk.edu/plasma/software/
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1.10. DOCUMENTATION OF PLASMA

Further details are provided in the chapter 3 Installing PLASMA.

1.10 Documentation of PLASMA

PLASMA package comes with a variety of pdf and html documentation.

• The PLASMA Users Guide (this document)

• The PLASMA README

• The PLASMA Installation Guide

• The PLASMA Routine Description

• The PLASMA and Tau Guide

• The PLASMA Routine browsing

You will find all of these in the documentation section on the PLASMA website http:

//icl.cs.utk.edu/plasma.

1.11 Support for PLASMA

PLASMA has been thoroughly tested before release, using multiple combinations of ma-
chine architectures, compilers and BLAS libraries. The PLASMA project supports the
package in the sense that reports of errors or poor performance will gain immediate atten-
tion from the developers. Such reports – and also descriptions of interesting applications
and other comments – should be posted to the PLASMA users’ forum:

http://icl.cs.utk.edu/plasma/forum/

1.12 Funding

The PLASMA project is funded in part by the National Science Foundation, U. S. Depart-
ment of Energy, Microsoft Corporation, and The MathWorks Inc.
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CHAPTER 2

Fundamentals

2.1 Design Principles

The main motivation behind the PLASMA project are performance shortcomings of
LAPACK and ScaLAPACK on shared memory systems, specifically systems consisting of
multiple sockets of multicore processors. The three crucial elements that allow PLASMA
to achieve performance greatly exceeding that of LAPACK and ScaLAPACK are: the im-
plementation of tile algorithms, the application of tile data layout and the use of dynamic
scheduling. Although some performance benefits can be delivered by each one of these
techniques on its own, it is only the combination of all of them that delivers maximum
performance and highest hardware utilization.

2.1.1 Tile Algorithms

Tile algorithms are based on the idea of processing the matrix by square tiles of relatively
small size, such that a tile fits entirely in one of the cache levels associated with one core.
This way a tile can be loaded to the cache and processed completely before being evicted
back to the main memory. Of the three types of cache misses, compulsory, capacity and
conflict, the use of tile algorithms minimizes the number of capacity misses, since each
operation loads the amount of data that does not “overflow” the cache.
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2.1. DESIGN PRINCIPLES

For some operations such as matrix multiplication and Cholesky factorization, translating
the classic algorithm to the tile algorithm is trivial. In the case of matrix multiplication, the
tile algorithm is simply a product of applying the technique of loop tiling to the canonical
definition of three nested loops. It is very similar for the Cholesky factorization. The
left-looking definition of Cholesky factorization from LAPACK is a loop with a sequence of
calls to four routines: xSYRK (symmetric rank-k update), xPOTRF (Cholesky factorization
of a small block on the diagonal), xGEMM (matrix multiplication) and xTRSM (triangular
solve). If the xSYRK, xGEMM and xTRSM operations are expressed with the canonical
definition of three nested loops and the technique of loop tiling is applied, the tile algorithm
results. Since the algorithm is produced by simple reordering of operations, neither the
number of operations nor numerical stability of the algorithm are affected.

The situation becomes slightly more complicated for LU and QR factorizations, where the
classic algorithms factorize an entire panel of the matrix (a block of columns) at every step
of the algorithm. One can observe, however, that the process of matrix factorization is syn-
onymous with introducing zeros in approproate places and a tile algoritm can be fought of
as one that zeroes one tile of the matrix at a time. This process is referred to as updating
of a factorization or incremental factorization. The process is equivalent to factorizing the
top tile of a panel, then placing the upper triangle of the result on top of the tile blow and
factorizing again, then moving to the next tile and so on. Here, the tile LU and QR algo-
rithms perform slightly more floating point operations and require slightly more memory
for auxiliary data. Also, the tile LU factorization applies a different pivoting pattern and, as
a result, is less numerically stable than classic LU with full pivoting. Numerical stability is
not an issue in case of the tile QR, which relies on orthogonal transformations (Householder
reflections), which are numerically stable.

DGETRF

DTSTRF

DGESSM

DSSSSM

DGESSM

DTSTRF

DSSSSM

DSSSSM DSSSSM

U
L1

L2

U

C1

C1

C2

L1

L2
L1'L1'

P2 P2

P1P1

Figure 2.1: Schematic illustration of the tile LU factorization (kernel names for real arith-
metics in double precision).
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2.1. DESIGN PRINCIPLES

2.1.2 Tile Data Layout

Tile layout is based on the idea of storing the matrix by square tiles of relatively small size,
such that each tile occupies a continuous memory region. This way a tile can be loaded
to the cache memory efficiently and the risk of evicting it from the cache memory before
it is completely processed is minimized. Of the three types of cache misses, compulsory,
capacity and conflict, the use of tile layout minimizes the number of conflict misses, since
a continuous region of memory will completely fill out a set-associative cache memory
before an eviction can happen. Also, from the standpoint of multithreaded execution, the
probability of false sharing is minimized. It can only affect the cache lines containing the
beginning and the ending of a tile.

In standard cache-based architecture, tiles continously laid out in memory maximize the
profit from automatic prefetching. Tile layout is also beneficial in situations involving the
use of accelerators, where explicit communication of tiles through DMA transfers is re-
quired, such as moving tiles between the system memory and the local store in Cell B. E.
or moving tiles between the host memory and the device memory in GPUs. In most cir-
cumstances tile layout also minimizes the number of TLB misses and conflicts to memory
banks or partitions. With the standard (column-major) layout, access to each column of
a tile is much more likely to cause a conflict miss, a false sharing miss, a TLB miss or a
bank or partition conflict. The use of the standard layout for dense matrix operations is a
performance minefield. Although occasionally one can pass through it unscathed, the risk
of hitting a spot deadly to performance is very high.

Another property of the layout utilized in PLASMA is that it is “flat”, meaning that it does
not involve a level of indirection. Each tile stores a small square submatrix of the main
matrix in a column-major layout. In turn, the main matrix is an arrangement of tiles im-
mediately following one another in a column-major layout. The offset of each tile can be
calculated through address arithmetics and does not involve pointer indirection. Alterna-
tively, a matrix could be represented as an array of pointers to tiles, located anywhere in
memory. Such layout would be a radical and unjustifiable departure from LAPACK and
ScaLAPACK. Flat tile layout is a natural progression from LAPACK’s column-major lay-
out and ScaLAPACK’s block-cyclic layout.

Another related property of PLASMA’s tile layout is that it includes provisions for padding
of tiles, i.e., the actual region of memory designated for a tile can be larger than the memory
occupied by the actual data. This allows to force a certain alignment of tile boundaries,
while using the flat organization described in the previous paragraph. The motivation is that,
at the price of small memory overhead, alignment of tile boundaries may prove benefivial
in multiple scenarios involving memory systems of standard multicore processors, as well
as accelerators. The issues that come into play are, again, the use of TLBs and memory
banks or partitions.
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2.1. DESIGN PRINCIPLES

Figure 2.2: Schematic illustration of the tile
layout with column-major order of tiles,
column-major order of elements within tiles
and (optional) padding for enforcing a cer-
tain alighment of tile bondaries.

2.1.3 Dynamic Task Scheduling

Dynamic scheduling is the idea of assigning work to cores based on the availability of data
for processing at any given point in time and is also referred to as data-driven schedul-
ing. The concept is related closely to the idea of expressing computation through a task
graph, often referred to as the DAG (Direct Acyclic Graph), and the flexibility explor-
ing the DAG at runtime. Thus, to a large extent, dynamic scheduling is synonymous with
runtime scheduling. An important concept here is the one of the critical path, which defines
the upper bound on the achievable parallelism, and needs to be pursued at the maximum
speed. This is in direct opposition to the fork-and-join or data-parallel programming mod-
els, where artificial synchronization points expose serial sections of the code, where multi-
ple cores are idle, while sequential processing takes place. The use of dynamic scheduling
introduces a trade-off, though. The more dynamic (flexible) scheduling is, the more central-
ized (and less scalable) the scheduling mechanism is. For that reason, currently PLASMA
uses two scheduling mechanisms, one which is fully dynamic and one where work is as-
signed statically and dependency checks are done at runtime.

The first scheduling mechanism relies on unfolding a sliding window of the task graph at
runtime and scheduling work by resolving data hazards: Read After Write (RAW), Write Af-
ter Read (WAR) and Write After Write (WAW), a techniqe analogous to instruction schedul-
ing in superscalar processors. It also relies on work-stealing for balanding the load among
all multiple cores. The second scheduling mechanism relies on statically designating a path
through the execution space of the algorithm to each core and following a cycle: transition
to a task, wait for its dependencies, execute it, update the overall progress. Task are iden-
tified by tuples and task transitions are done through locally evaluated formulas. Progress
information can be centralized, replicated or distributed (currently centralized).
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2.2. SOFTWARE STACK

SGEQRT STSQRT SLARFB SSSRFB

Figure 2.3: A trace of the tile QR factorization executing on eight cores without any global
synchronization points (kernel names for real arithmetics in single precision).

2.2 Software Stack

Starting from the PLASMA Version 2.2, release in July 2010, the library is built on top
of standard software components, all of which are either available as open source or are
standard OS facilities. Some of them can be replaced by packages provided by hardware
vendors for efficiency reasons. Figure 2.4 presents the current structure of PLASMA’s
software stack. Following is the bottom-up description of individual components.

BLASBLAS

CBLASCBLAS

(C)LAPACK(C)LAPACK

LAPACK C WrapperLAPACK C Wrapper

QUARKQUARK

core BLAScore BLAS ThreadsThreads
POSIX / MS WindowsPOSIX / MS Windows

PLASMAPLASMA                        

Netlib

OS

PLASMA
distribution

● vendor           

● Netlib            

Optimized vendor implementation
absolutely critical for performance

Figure 2.4: The software stack of PLASMA Version 2.3.

BLAS is a set of Basic Linear Algebra Subprograms, a de facto standard for basic linear
algebra operations such as vector and matrix multiplication. The definition of BLAS
is available from Netlib in the form of unoptimized FORTRAN code. Highly opti-
mized implementations are available from many hardware vendors, such as Intel and
AMD. Fast implementations are also available in the form of academic packages,
such as Goto BLAS and ATLAS. The standard interface to BLAS is the FORTRAN
interface.
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2.2. SOFTWARE STACK

CBLAS is the C language interface to BLAS. The definition of CBLAS is available from
Netlib in the form of a set of C wrappers for BLAS with FORTRAN interface. Most
commercial and academic implementations of BLAS also provide CBLAS. Most
people refer to CBLAS as a thin C language interoperability layer on top of an actual
implementation available through a FORTRAN interface.

LAPACK (Linear Algebra PACKage) is a software library for numerical linear algebra,
a direct predecessor of PLASMA, providing routines for solving linear systems of
equations, linear least square problems, eigenvalue problems and singular value prob-
lems. Many commercial and academic implementations of BLAS include a small
subset of most common LAPACK routines, such as LU, Cholesky and QR factoriza-
tions. PLASMA uses a subset of LAPACK routines commonly provided with BLAS.

CLAPACK is a version of LAPACK available from Netlib created by automatically
translating FORTRAN LAPACK to C with the help of the F2C utility. It provides
LAPACK functionality in situations when only a C compiler is available. At the
same time, it provides the same calling convention as the “original” LAPACK, the
FORTRAN interface that conforms, for the most part, to the GNU g77 Application
Binary Interface (ABI).

LAPACK C Wrapper is a C language interface to LAPACK (or CLAPACK). While at
the time of writting this guide the effort is underway to standardize the C interface
to LAPACK, it has not been finalized yet. For the time being, an implementation of
the C interface is provided by Netlib. Since it has not been standardized yet, it is not
available from any other source.

core BLAS is a set of serial kernels, the building blocks for PLASMA algorithms. Ideally,
core BLAS would be imlemented as monolythic kernels that are carefully optimized
for a given architecture. This amounts, however, to a prohibitive coding effort mainly
due the challenges of SIMD’zation for vector extensions ubiquitous in modern pro-
cessors. Instead, these kernels are currently constructed from calls to BLAS and
LAPACK, which is a suboptimal way of implementing them, but the only feasible
one known to the authors.

Threads are the main mechanism for parallelization in PLASMA. Currently relies on ba-
sic threading facilities such as launching and merging of threads, mutexes and condi-
tional variables. Currently PLASMA natively supports POSIX threads and Microsoft
Windows threads.

QUARK is a simple dynamic scheduler provided with the PLASMA distribution, similar
in desing principles to the Jade project from the Massachusetts Institute of Technol-
ogy, the SMPSs system from the Barcelona Supercomputer Center, and the StarPU
system from INRIA Bordeaux. While sharing multiple slimilarities with the other
projects, QUARK provides a number of extensions necessary for integration with a
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2.2. SOFTWARE STACK

numerical library such as PLASMA. Besides serving as a component of PLASMA,
QUARK is a stand-alone scheduler and can be easily used outside of PLASMA.

One can observe that while CBLAS provides the C interface to BLAS without the actual
implementation, CLAPACK provides the implementation of LAPACK without the actual C
interface.

12



CHAPTER 3

Installing PLASMA

The requirements for installing PLASMA on a UNIXTM system are a C compiler, a Fortran
compiler and several external libraries:

• a BLAS library

• a CBLAS library

• a LAPACK library

• a Matrix generation library (TMG from LAPACK)

• a C wrapper for LAPACK library

• and the availability of the pthread library.

• The HWLoc library is also strongly recommended but not absolutely required.
(http://www.open-mpi.org/projects/hwloc/)

Several BLAS libraries include directly a part of this requirements. You can refer to the
table 3.1 to see what is provided by your BLAS library. For requirement and instructions
on Microsoft WindowsTM see Section 3.6. Before PLASMA can be built or tested, you
must define all machine-specific parameters for the architecture on which you are installing
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3.1. GETTING THE PLASMA INSTALLER

PLASMA. All machine-specific parameters are contained in the file make.inc. Some ex-
amples are provided in the makes directory. To ease the installation process, we provide an
installer which can download the missing libraries from NetLib, install them and generate
the required machine-specific make.inc file. Users are strongly encouraged to use it.

Table 3.1: External libraries provided by BLAS
BLAS Library BLAS CBLAS LAPACK TMG LAPACK C Wrapper
AMD ACML X - X - -
ATLAS X X - - -
GotoBLAS X - - - -
GotoBLAS2 X X1 X - -
IBM ESSL X - With CCI2 - -
Intel MKL X X X X -
refblas X X - - -
Veclib (Mac OS/X) Veclib is actually not supported

3.1 Getting the PLASMA Installer

The PLASMA installer is a set of python scripts developed to ease the installation of the
PLASMA library and of its requirements. It can automatically download, configure and
compile the PLASMA library including the libraries required by PLASMA.

It is available on PLASMA download page:

http://icl.cs.utk.edu/plasma/software/

3.2 PLASMA Installer Flags

Here’s a list of the flags that can be used to provide the installer with information about the
system, for example, the C and Fortran compilers, the location of a local BLAS library, or
whether the reference BLAS needs to be downloaded.

./setup.py

-h or --help

display this help and exit

--prefix=[DIR]
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3.2. PLASMA INSTALLER FLAGS

install files in DIR [./install]

--build=[DIR]

libraries are built in DIR [./build]

Contains log, downloads and builds.

--cc=[CMD]

the C compiler. [cc]

--fc=[CMD]

the Fortran compiler. [gfortran]

--cflags=[FLAGS]

the flags for the C compiler [-02]

--fflags=[FLAGS]

the flags for the Fortran compiler [-O2]

--ldflags_c=[flags]

loader flags when main program is in C. Some

compilers (e.g. PGI) require different

options when linking C main programs to

Fortran subroutines and vice-versa

--ldflags_fc=[flags]

loader flags when main program is in

Fortran. Some compilers (e.g. PGI) require

different options when linking Fortran main

programs to C subroutines and vice-versa.

If not set, ldflags_fc = ldflags_c.

--make=[CMD]

the make command [make]

--blaslib=[LIB]

a BLAS library

--cblaslib=[LIB]

a CBLAS library

--lapacklib=[LIB]

a Lapack library
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3.2. PLASMA INSTALLER FLAGS

--lapclib=[DIR]

path to a LAPACK C wrapper.

--downblas

Download and install reference BLAS.

--downcblas

Download and install reference CBLAS.

--downlapack

Download and install reference LAPACK.

--downlapc

Download and install reference LAPACK C Wrapper.

--downall

Download and install all missing external libraries.

If you don’t have access to wget or no network

connection, you can provide the following packages

in the directory builddir/download:

http://netlib.org/blas/blas.tgz

http://www.netlib.org/blas/blast-forum/cblas.tgz

http://www.netlib.org/lapack/lapack.tgz

http://icl.cs.utk.edu/projectsfiles/plasma/pubs/lapack_cwrapper.tgz

http://icl.cs.utk.edu/projectsfiles/plasma/pubs/plasma.tar.gz

--[no]testing

enables/disables the testings. All externals

libraries are required and tested if enabled.

Enable by default.

--nbcores

The number of cores to be used by the testing. [2]

--clean

cleans up the installer directory.

The installer will set the following environment variables

OMP_NUM_THREADS=1

GOTO_NUM_THREADS=1
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3.3. PLASMA INSTALLER USAGE

MKL_NUM_THREADS=1

in order to disable multithreading within BLAS. IMPORTANT Do not forget to set those
environment variables for any further usage of the PLASMA libraries.

3.3 PLASMA Installer Usage

For an installation with gcc, gfortran and reference BLAS

./setup.py --cc gcc --fc gfortran --downblas

For an installation with ifort, icc and MKL (em64t architecture)

./setup.py --cc icc --fc ifort --blaslib="-lmkl_em64t -lguide"

For an installation with gcc, gfortran, ATLAS

./setup.py --cc gcc --fc gfortran --blaslib="-lf77blas -lcblas -latlas"

For an installation with gcc, gfortran, goto BLAS and 4 cores

./setup.py --cc gcc --fc gfortran --blaslib="-lgoto" --nbcores=4

For an installation with xlc, xlf, essl and 8 cores

./setup.py --cc xlc --fc xlf --blaslib="-lessl" --nbcores=8

3.4 PLASMA Installer Support

Please note that this is an alpha version of the installer and, even though it has been tested
on a wide set of systems, it may not work. If you encounter a problem, your feedback would
be greatly appreciated and would be very useful for improving the quality of this installer.
Please submit your complaints and suggestions to the PLASMA forum:

http://icl.cs.utk.edu/plasma/forum/
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3.5. TIPS AND TRICKS

3.5 Tips and Tricks

3.5.1 Tests are slow

If the installer is asked to automatically download and install a BLAS library (using the
--downblas flag), the reference BLAS from Netlib is installed and very low performance
is to be expected. It is strongly recommended that you use an optimized BLAS library (such
as ATLAS, Cray Scientific Library, HP MLIB, Intel MKL, GotoBLAS, IBM ESSL, VecLib
etc.) and provide its location through the --blaslib flag.

3.5.2 Installing BLAS on a Mac

Optimized BLAS are available using VecLib if you install the Xcode developer package
provided with your Mac OS installation CD. On MAC OS/X you may be required to add
the following flag.

--ccflags="-I/usr/include/sys/"

3.5.3 Processors with Hyper-threading

The PLASMA installer cannot detect if you have hyper-threading enabled on your machine,
if you dont use HWLoc library. In this case, we advise you to limit the number of cores for
the initial testing of the PLASMA library to half the numbers of cores available if you do
not know your exact architecture. Using hyper-threading will cause the PLASMA testing to
hang. When using PLASMA, the number of cores should not exceed the number of actual
compute cores (ignore cores appearing due to hyper-threading).

3.5.4 Problems with Downloading

If the required packages cannot be automatically downloaded (for example, because no
network connection is available on the installation system), you can obtain them from the
following URLs and place them in the build subdirectory of the installer (if the directory
does not exist, create it):

BLAS Reference BLAS written in Fortran can be obtained from

http://netlib.org/blas/blas.tgz

PLASMA The PLASMA source code is available via a link on the download page:

http://icl.cs.utk.edu/plasma/software/
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3.6. PLASMA UNDER WINDOWS

3.6 PLASMA under Windows

We provide installer packages for 32-bit and 64-bit binaries on Windows available from the
PLASMA web site.

http://icl.cs.utk.edu/plasma/software/

These Windows packages are created using Intel C and Fortran compilers using multi-
threaded static linkage, and the packages should include all required redistributable li-
braries. The binaries included in this distribution link the PLASMA libraries with Intel
MKL BLAS in order to provide basic functionality tests. However, any BLAS library
should be usable with the PLASMA libraries.

3.6.1 Using the Windows PLASMA binary package

Using the PLASMA libraries requires at least a C99 or C++ compiler and a BLAS imple-
mentation. The examples directory contains several examples of using PLASMA’s linear
algebra functions and a simplified makefile (Makefile.nmake). This file provides guid-
ance on how to compile and link C or Fortran code using several different compilers (Mi-
crosoft Visual C, Intel C, Intel Fortran) and different BLAS libraries (Intel MKL, AMD
ACML) in 32- or 64-bit floating-point precisions. The examples in Makefile.nmake will
have to be adjusted to the appropriate locations of the compilers and libraries.

You need to make sure that the BLAS libraries are being used in a sequential mode, either
by linking with a sequential version of the BLAS libraries, or by setting the appropriate
environment variable for that library. PLASMA manages the parallelism on a machine and
it will cause substantial performance degradation and a possible hang of the code if the
BLAS calls are also running in parallel.

3.6.2 Building PLASMA libraries

Rebuilding the PLASMA libraries should not be required, but if you wish to do so, the
tested build environment uses Intel C and Fortran compilers, Intel MKL BLAS, and the
CMake build system. This build enforces an out-of-source build to avoid clobbering pre-
existing files. The following example commands show how the build might be done from a
command shell window where the path has been setup for the appropriate (either 32-bit or
64-bit) Intel environment.

mkdir BUILD

cd BUILD

cmake -DCMAKE_Fortran_COMPILER=ifort -DCMAKE_C_COMPILER=icl
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3.6. PLASMA UNDER WINDOWS

-DCMAKE_CXX_COMPILER=icl -G "NMake Makefiles" ..

nmake

Native threading API (as supplied with modern Windows systems starting with Windows
2000) is used to provide parallelism within the PLASMA code. Wrapper functions trans-
late any PLASMA threading calls into native Windows thread calls. For example, the
beginthreadex() function is called to spawn PLASMA threads.
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CHAPTER 4

PLASMA Testing Suite

There are two distinct sets of test programs for PLASMA routines, simple test programs
written in C and advanced test programs written in Fortran. These programs test the lin-
ear equation routines (eigensystem routines are not yet available) in each data type single,
double, complex, and double complex (sdcz).

4.1 Simple Test Programs

In the testing directory, you will find simple C codes which test the
PLASMA [sdcz]gels, PLASMA [sdcz]gesv, PLASMA [sdcz]posv routines as well
as routines using iterative refinement for LU factorization using random matrices. Each
solving routine is also tested using different scenarios. For instance, testing complex least
square problems on tall matrices is done by a single call to PLASMA zgels as well as
successive calls to PLASMA zgeqrf, PLASMA zunmqr and PLASMA ztrsm.

A python script plasma testing.py runs all testing routines in all precisions. This script
can take the number of cores to run the testing as a parameter, the default being half of the
cores available.

A brief summary is printed out on the screen as the testing procedure runs. A detailed
summary is written in testing results.txt at the end of the testing phase and can be

21



4.2. ADVANCED TEST PROGRAMS

sent the PLASMA development group if any failures are encountered (see Section 4.3).

Each test can also also be run individually. The usage of each test is shown by typing the
desired testing program without any arguments. For example:

> ./testing_cgesv

Proper Usage is : ./testing_cgesv ncores N LDA NRHS LDB with

- ncores : number of cores

- N : the size of the matrix

- LDA : leading dimension of the matrix A

- NRHS : number of RHS

- LDB : leading dimension of the matrix B

4.2 Advanced Test Programs

In the testing/lin directory, you will find Fortran codes which check the
PLASMA [sdcz]gels, PLASMA [sdcz]gesv and PLASMA [sdcz]posv routines. This al-
lows us to check not only the correctness of the routines but also the PLASMA Fortran
interface. This test suite has been taken from LAPACK 3.2 with necessary modifications to
safely integrate PLASMA routine calls.

There is also a python script called lapack testing.py which tests all routines in all
precisions. A brief summary is printed out on the screen as the testing procedure runs. A
detailed summary is written in testing results.txt at the end of the testing procedure
and can be sent to us if any failures are encountered (see Section 4.3).

Each test can also be run individually. For single, double, complex, and double complex
precision tests, the calls are respectively:

xlintsts < stest.in > stest.out

xlintstd < dtest.in > dtest.out

xlintstc < ctest.in > ctest.out

xlintstz < ztest.in > ztest.out

For more information on the test programs and how to modify the input files, please refer
to LAPACK Working Note 41 [1].

4.3 Send the Results to Tennessee

You made it! You have now finished installing and testing PLASMA. If you encountered
failures in any phase of the installing or testing process, please consult Chapter 8 as well as
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4.3. SEND THE RESULTS TO TENNESSEE

the README file located in the root directory of your PLASMA installation. If the sugges-
tions do not fix your problem, please feel free to send a post in the PLASMA users’ forum
http://icl.cs.utk.edu/plasma/forum/.

Tell us the type of machine on which the tests were run, the version of the operating sys-
tem, the compiler and compiler options that were used, and details of the BLAS library
or libraries that you used. You should also include a copy of the output file in which the
failure occurs. We encourage you to make the PLASMA library available to your users and
provide us with feedback from their experiences.
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CHAPTER 5

Use of PLASMA and Examples

5.1 Fortran 90 Interfaces

It is possible to call PLASMA from modern Fortran, making use of the Fortran 2003 C
interoperability features.

The benefits of using the Fortran 90 interfaces over the old-style Fortran 77 interfaces are:

• Compile-time argument checking.

• Native and transparent handling of pointer arguments - arrays, descriptors and han-
dles.

• A clean interface between Fortran and C.

In order to build the Fortran 90 interfaces add the following to your make.inc file:
PLASMA_F90 = 1

To call PLASMA via the interfaces, ’Use PLASMA’ in your Fortran code.

Arguments such as descriptors and handles required by the PLASMA tiled and asyn-
chronous interfaces are passed as type(c ptr), which is part of the Fortran 2003 ISO
C bingings module (so you will also need to ’Use iso c binding’).
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5.2. EXAMPLES

For the LAPACK-style interfaces, arrays should be passed in as normal.

Four examples of using the Fortran 90 interfaces are given, which show how to use the mod-
ule, call auxiliary functions such as initializing PLASMA and setting options, perform tasks
such as allocating workspace and translating between layouts, and calling a computational
routine:

example sgebrd.f90: single precision real bi-diagonal reduction using LAPACK-syle
interface.

example dgetrs tile async.f90: double precision real factorizaion followed by lin-
ear solve using the tiled, asynchronous interface.

example cgeqrf tile.f90: single precision complex QR factorization using the tiled
interface.

example zgetrf tile.f90: double precision complex LU factorization using the tiled
interface.

The interfaces can be found in the ’control’ directory: plasma f90.f90,

plasma sf90.F90, plasma df90.F90, plasma cf90.F90, plasma zf90.F90,

plasma dsf90.F90 & plasma zcf90.F90

Please check the subroutine wrappers (following the ’contains’ statement in each module)
to see the interfaces for the routines to call from your Fortran.

5.2 Examples

In the ./examples directory, you will find simple example codes to call the
PLASMA [sdcz]gels, PLASMA [sdcz]gesv and PLASMA [sdcz]posv routines from a C
program or from a Fortran program. In this section we further explain the necessary steps
for a correct use of these PLASMA routines.

5.3 PLASMA dgesv example

Before calling the PLASMA routine PLASMA dgesv, some initialization steps are required.

Firstly, we set the dimension of the problem Ax = B. In our example, the coefficient matrix
A is 10-by-10, and the right-hand side matrix B 10-by-5. We also allocate the memory space
required for these two matrices.
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5.3. PLASMA DGESV EXAMPLE

in C:

int N = 10;

int NRHS = 5;

int NxN = N*N;

int NxNRHS = N*NRHS;

double *A = (double *)malloc(NxN*sizeof(double));

double *B = (double *)malloc(NxNRHS*sizeof(double));

in Fortran:

INTEGER N, NRHS

PARAMETER ( N = 10 )

PARAMETER ( NRHS = 5 )

DOUBLE PRECISION A( N, N ), B( N, NRHS )

Secondly, we initialize the matrix A and B with random values. Since we cruelly lack
imagination, we use the LAPACK function dlarnv for this task. For a starter, you are
welcome to change the values in the matrix. Remember that the interface of PLASMA dgesv

uses column major format.

in C:

int IONE=1;

int ISEED[4] = {0,0,0,1}; /* initial seed for dlarnv() */

/* Initialize A */

dlarnv(&IONE, ISEED, &NxN, A);

/* Initialize B */

dlarnv(&IONE, ISEED, &NxNRHS, B);

in Fortran:

INTEGER I

INTEGER ISEED( 4 )

EXTERNAL DLARNV

DO I = 1, 4

ISEED( I ) = 1

ENDDO

!-- Initialization of the matrix

CALL DLARNV( 1, ISEED, N*N, A )

!-- Initialization of the RHS

CALL DLARNV( 1, ISEED, N*NRHS, B )

Thirdly, we initialize PLASMA by calling the PLASMA Init routine. The variable cores

specifies the number of cores PLASMA will use.

in C:
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int cores = 2;

/* Plasma Initialize */

INFO = PLASMA_Init(cores);

in Fortran:

INTEGER CORES

PARAMETER ( CORES = 2 )

INTEGER INFO

EXTERNAL PLASMA_INIT

! -- Initialize Plasma

CALL PLASMA_INIT( CORES, INFO )

Before we can call PLASMA dgesv, we need to allocate some workspace necessary for the
PLASMA dgesv routine to operate. In PLASMA, each routine has its own routine to allo-
cate its specific workspace arrays. Those routines are all defined in the workspace.c file.
Their names are of the kind PLASMA Alloc Workspace with the name of the associated
routine in lower case for C and PLASMA ALLOC WORKSPACE with the name of the asso-
ciated routine in upper case for Fortran. You will also need to check the interface since
they are different from one routine to the other. For the PLASMA dgesv routine, two arrays
need to be initialized, the workspace (here it is called L in the C code and HL in the Fortran
Code) and the pivots (here it is called IPIV in the C code and HIPIV in the Fortran Code).
Note that in C, you need to use standard pointers; while in Fortran, you need to use handle
defined as an array of two elements of INTEGER*4.

in C:

double *L;

int *IPIV;

PLASMA_Alloc_Workspace_dgesv(N, &L, &IPIV);

in Fortran:

INTEGER*4 HL( 2 ), HPIV( 2 )

EXTERNAL PLASMA_ALLOC_WORKSPACE_DGESV

! -- Allocate L and IPIV

CALL PLASMA_ALLOC_WORKSPACE_DGESV( N, HL, HPIV, INFO )

Finally, we can call the PLASMA dgesv routine. You can report to the header of the routine
for a complete description of the arguments. The description is also available online in the
PLASMA routine description html page: http://icl.cs.utk.edu/projectsfiles/

plasma/html/routine.html. As in LAPACK, PLASMA is returning a return variable,
INFO, that indicates if the exit was successful or not. A successful exit is indicated by
INFO equal to 0. In a case of INFO different from 0, the value of INFO should help you
to understand the reason of the failure. (See the return value section in the above cited
documentation.)

in C:
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5.3. PLASMA DGESV EXAMPLE

/* Solve the problem */

INFO = PLASMA_dgesv(N, NRHS, A, N, L, IPIV, B, N);

if (INFO < 0)

printf("-- Error in DGESV example ! \n");

else

printf("-- Run successful ! \n");

in Fortran:

! -- Perform the LU solve

CALL PLASMA_DGESV( N, NRHS, A, N, HL, HPIV, B, N, INFO )

IF ( INFO < 0 ) THEN

WRITE(*,*) " -- Error in DGESV example !"

ELSE

WRITE(*,*) " -- Run successful !"

ENDIF

Before exiting the program, we need to free the resource used by our arrays and finalize
PLASMA. To deallocate the C array, a simple call to free is needed whereas in Fortran,
PLASMA provides the routine PLASMA DEALLOC HANDLE to do so. PLASMA Finalize call
will free all the internal allocated variables and finalize PLASMA.

in C:

/* Deallocate L and IPIV */

free(L); free(IPIV);

/* Plasma Finalize */

INFO = PLASMA_Finalize();

in Fortran:

! -- Deallocate L and IPIV

CALL PLASMA_DEALLOC_HANDLE( HL, INFO )

CALL PLASMA_DEALLOC_HANDLE( HPIV, INFO )

!-- Finalize Plasma

CALL PLASMA_FINALIZE( INFO )
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CHAPTER 6

Performance of PLASMA

6.1 A Library for Multicore Architectures

To achieve high performance on multicore architectures, PLASMA relies on tile algorithms,
which provide fine granularity parallelism. The standard linear algebra algorithms can then
be represented as Directed Acyclic Graphs (DAG) where nodes represent tasks and edges
represent dependencies among them. Our programming model enforces asynchronous, out
of order scheduling of operations. This concept is used as the basis for a scalable yet highly
efficient software framework for computational linear algebra applications.

In LAPACK, parallelism is obtained though the use of multithreaded Basic Linear Algebra
Subprograms (BLAS). In PLASMA, parallelism is no longer hidden inside the BLAS but
is brought to the fore to yield much better performance.

PLASMA performance strongly depends on tunable execution parameters trading off uti-
lization of different system resources. The outer block size (NB) trades off parallelization
granularity and scheduling flexibility with single core utilization, while the inner block size
(IB) trades off memory load with extra-flops.

PLASMA is currently scheduled statically with a trade off between load balancing and data
reuse.
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6.2 Comparison to other libraries

We present here the performance of the three following one sided factorizations: Cholesky,
QR, and LU. We compare PLASMA against the two established linear algebra packages
LAPACK and ScaLAPACK. The experiments were conducted on two different multicore
architectures based on Intel Xeon EMT64 and IBM Power6.

PLASMA, LAPACK and ScaLAPACK are all linked with the optimized vendor BLAS
available on the system provided within Intel MKL 10.1 and IBM ESSL 4.3 on the Intel64
and Power6 architectures, respectively. The first architecture is a quad-socket quad-core
machine based on an Intel Xeon EMT64 E7340 processor operating at 2.39 GHz. Its theo-
retical peak is equal to 9.6 Gflop/s/ per core or 153.2 Gflop/s for the whole node (16 cores).
The second architecture is a SMP node composed of 16 dual-core Power6 processors. Each
dual-core Power6 processor runs at 4.7 GHz, leading to a theoretical peak of 18.8 Gflop/s
per core and 601.6 Gflop/s per node (32 cores).

We only report double precision performance numbers for simplicity purposes. PLASMA
is tuned with the pruned search method as described in [2]. For ScaLAPACK, we have
tuned the data distribution parameters (p,q,nb) as functions of the number of cores and the
matrix size through an exhaustive search. For reference LAPACK, we have been using the
default block size (no tuning).

ScaLAPACK and PLASMA interfaces allow the user to provide data distributed on the
cores. In our shared-memory multicore environment, because we do not flush the caches,
these libraries have thus the advantage to start the factorization with part of the data dis-
tributed on the caches. This is not negligible. For instance, a 8000×8000 double precision
matrix can be held distributed on the L3 caches of the 32 cores of a Power6 node.

Figures 6.1, 6.2, 6.3 present performance for the Cholesky, QR and LU factorizations, re-
spectively.

6.3 Tuning - Howto

Users willing to obtain good performance from PLASMA need to tune PLASMA param-
eters. The example code below illustrates how to change the NB and IB parameters before
calling the appropriate PLASMA routine to factorize or solve a linear system.

We recall that QR and LU algorithms requires both NB and IB parameters while Cholesky
needs only NB.

...

/* Plasma Tune */

PLASMA_Disable(PLASMA_AUTOTUNING);
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Figure 6.1: Performance of the Cholesky factorization (Gflop/s).
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Figure 6.2: Performance of the QR factorization (Gflop/s).
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Figure 6.3: Performance of the LU factorization (Gflop/s).
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6.3. TUNING - HOWTO

PLASMA_Set(PLASMA_TILE_SIZE, NB);

PLASMA_Set(PLASMA_INNER_BLOCK_SIZE, IB);

...

A pruned search method to obtain “good” parameters is described in [2]. We note that
autotuning is part of the PLASMA’s roadmap; unfortunately, as of 2.0.0, the PLASMA
software does not have its autotuning component available for release.
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CHAPTER 7

Accuracy and Stability

We present backward stability results of the algorithms used in PLASMA. Backward sta-
bility is a concept developed by Wilkinson in [3, 4]. For more general discussion on ac-
curacy and stability of numerical algorithms, we refer the users to Higham [5]. We follow
Higham’s notation and methodology here; in fact, we mainly present his results.

7.1 Notations

• We assume the same floating-point system as Higham [5]. His assumptions are ful-
filled by the IEEE standard. The unit round-off is u which is about 1.11×10−16 for
double.

• The absolute value notation | · | is extended from scalar to matrices where matrix |A|
denotes the matrix with (i, j) entry |ai j|.

• Inequalities between matrices hold componentwise. If we write A < B, this means
that for any i and any j, ai j < bi j (A and B are of the same size).

• If nu < 1, we define γn ≡ nu
1−nu .

• Computed quantities are represented with an overline or with the f l(·) notation.

• Inequality with | · | can be converted to norms easily. (See [5, Lem.6.6].)
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7.2. PECULIARITY OF THE ERROR ANALYSIS OF THE TILE ALGORITHMS

7.2 Peculiarity of the Error Analysis of the Tile Algorithms

Numerical linear algebra algorithms rely at their roots on inner products. A widely used
result of error analysis of the inner product is given in Theorem 7.2.1

Theorem 7.2.1 (Higham, [5, Eq.(3.5)]) Given x and y, two vectors of size n, if xT y is eval-
uated in floating-point arithmetic, then, no matter what the order of evaluation, we have

|xT y− f l(xT y)| ≤ γn|x|T |y|.

While there exists a variety of implementations and interesting research that aim to reduce
errors in inner products (see for example [5, chapter 3 and 4]), we note that Theorem 7.2.1
is given independently of the order of evaluation in the inner products. The motivation
for being independent of the order of evaluation is that inner products are performed by
optimized libraries which use associativity of the addition for grouping the operations in
order to obtain parallelism and data locality in matrix-matrix multiplications.

Theorem 7.2.2 presents a remark from Higham. Higham notes that one can significantly
reduce the error bound of an inner product by accumulating it in pieces (which is indeed
what an optimized BLAS library would do to obtain performance).

Theorem 7.2.2 (Higham, [5, §3.1]) Given x and y, two vectors of size n, if xT y is evaluated
in floating-point arithmetic by accumulating the inner product in k pieces of size n/k, then,
we have

|xT y− f l(xT y)| ≤ γn/k+k−1|x|T |y|.

Theorem 7.2.2 has been used by Castaldo, Whaley, and Chronopoulos [6] to improve the
error bound in matrix-matrix multiplications.

The peculiarity of tile algorithms is that they explicitly work on small pieces of data and,
therefore, benefit in general from better error bounds than their LAPACK counterparts.

7.3 Tile Cholesky Factorization

The Cholesky factorization algorithm in PLASMA performs the same operations than any
version of the Cholesky. The organization of the operations in the inner products might be
different from one algorithm to the other. The error analysis is however essentially the same
for all the algorithms.

Theorem 7.3.1 presents Higham’s result for the Cholesky factorization.
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7.4. TILE HOUSEHOLDER QR FACTORIZATION

Theorem 7.3.1 (Higham, [5, Th.10.3]) If Cholesky factorization applied to the symmetric
positive definite matrix A ∈ Rn×n runs to completion then the computed factor R satisfies

RT R = A+∆A, where |∆A| ≤ γn+1|R
T ||R|.

Following Higham’s proof, we note that Higham’s Equation (10.4) can be tighten in our
case since we know that the inner product are accumulated within tiles of size b. The γi

term becomes γi/b+b−1 and we obtain the improved error bound given in Theorem 7.3.2.

Theorem 7.3.2 If Tile Cholesky factorization applied to the symmetric positive definite
matrix A ∈ Rn×n runs to completion then the computed factors R satisfies

RT R = A+∆A, where |∆A| ≤ γn/b+b|R
T ||R|.

We note that the error bound could even be made smaller by taking into account the inner
blocking used in the Cholesky factorization of each tile.

Higham explains how to relate the backward error of the factorization with the backward
error of the solution of a symmetric positive definite linear system of equations.

7.4 Tile Householder QR Factorization

The Tile Householder QR is backward stable since it is obtained through a product of back-
ward stable transformations. One can obtain a tighter error bound with tile algorithms than
with standard ones.

Higham explains how to relate the backward error of the factorization with the backward
error of the solution of a linear least squares.

7.5 Tile LU Factorization

Theorem 7.5.1 (Bientinesi and van de Geijn, [7, Th.6.5]) Given A ∈Rn×n, assume that the
blocked right-looking algorithm in Fig. 6.1 completes. Then the computed factors L and U
are such that

LU = A+∆A, where |∆A| ≤ γ n
b+b

(
|A|+ |L||U |

)
.

We note that Bientinesi and van de Geijn do not consider permutations.

Higham explains how to relate the backward error of the factorization with the backward
error of the solution of a linear system of equations.
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7.5. TILE LU FACTORIZATION

Words of cautions: It is important to note that Theorem 7.5.1 does not state that the algo-
rithm is stable. For the algorithm to be stable, we need to have

|L||U | ∼ |A|.

Whether this is the case or not is still an ongoing research topic. Therefore, we recom-
mend users to manipulate PLASMA dgesv with care. In case of doubt, it is better to use
PLASMA dgels.
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CHAPTER 8

Troubleshooting

8.1 Wrong Results

PLASMA is a software package distributed in source code, subject to different hardware /
software configurations. PLASMA may deliver wrong numerical results due to a number
of problems outside of PLASMA, such as:

• aggressive compiler optimizations violating code correctness,

• aggressive compiler optimizations violating IEEE floating point standard,

• hardware floating point arithmetic implementations violating IEEE standard,

• ABI differences between compilers, if mixing compilers,

• aggressive optimizations in BLAS implementations,

• bugs in BLAS implementations.

PLASMA is distributed with an installer with the intention to spare the user the process of
setting up compilation and linking options. Nevertheless, it might become necessary for the
user to do so. In such circumstances, the following recommendations should be followed.
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8.1. WRONG RESULTS

When building PLASMA, it is recommended that dangerous compiler optimizations are
avoided and instead flags enforcing IEEE compliance are used. It is generally recommended
that “-O2” optimization level is used and not higher. Users are strongly cautioned against
using different compilers for PLASMA and BLAS when building BLAS from source code.
Users are also strongly advices to pay attention to the linking sequence and follow vendor
recommendations, when vendor BLAS is used.

PLASMA software is tested daily by running a subset of LAPACK testing suite. Each pass
involves hundreds of thousands of tests including both test for numerical results, as well as
tests for detection of input errors, such as invalid input parameters. Currently the hardware
/ software configurations (in different combinations) known to pass all the tests include the
following architectures:

8.1.1 Linux machine: Intel x86-64

C compiler Fortran compiler BLAS testing testing/lin
GNU gcc 4.1.2 GNU gfortran 4.1.2 ATLAS 3.8.1 PASSED PASSED
GNU gcc 4.1.2 GNU gfortran 4.1.2 GotoBLAS 1.24 PASSED info error: 160
GNU gcc 4.1.2 GNU gfortran 4.1.2 GotoBLAS 2 PASSED numerical failure: 1 (SPO)

PASSED info error: 160
GNU gcc 4.1.2 GNU gfortran 4.1.2 Intel MKL 11.0 PASSED PASSED
GNU gcc 4.1.2 GNU gfortran 4.1.2 Reference BLAS PASSED PASSED
Intel icc 11.0 Intel ifort 11.0 ATLAS 3.8.1 PASSED PASSED
Intel icc 11.0 Intel ifort 11.0 GotoBLAS 1.24 PASSED numerical failure: 87 (CPO, ZPO)

PASSED illegal error: 0
PASSED info error: 188

Intel icc 11.0 Intel ifort 11.0 GotoBLAS 2 PASSED numerical failure: 87 (CPO, ZPO)
PASSED illegal error: 0
PASSED info error: 188

Intel icc 11.0 Intel ifort 11.0 Intel MKL 11.0 PASSED PASSED
Intel icc 11.0 Intel ifort 11.0 Reference BLAS PASSED PASSED
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8.1. WRONG RESULTS

8.1.2 Linux machine: Intel 32

C compiler Fortran compiler BLAS testing testing/lin
GNU gcc 4.3.3 GNU gfortran 4.3.3 Reference BLAS PASSED PASSED
GNU gcc 4.3.3 GNU gfortran 4.3.3 Intel MKL 10.1 PASSED PASSED
GNU gcc 4.3.3 GNU gfortran 4.3.3 ATLAS 3.8.1 PASSED PASSED
GNU gcc 4.3.3 GNU gfortran 4.3.3 GotoBLAS 1.24 PASSED ERROR
Intel icc 11.0 Intel ifort 11.0 Reference BLAS PASSED PASSED
Intel icc 11.0 Intel ifort 11.0 Intel MKL 10.1 PASSED PASSED
Intel icc 11.0 Intel ifort 11.0 ATLAS 3.8.1 PASSED PASSED
Intel icc 11.0 Intel ifort 11.0 GotoBLAS 1.24 PASSED ERROR

8.1.3 Linux machine: Intel Itanium

C compiler Fortran compiler BLAS testing testing/lin
GNU gcc 4.1.2 GNU gfortran 4.1.2 Reference BLAS PASSED PASSED
GNU gcc 4.1.2 GNU gfortran 4.1.2 GotoBLAS PASSED PASSED
GNU gcc 4.1.2 GNU gfortran 4.1.2 GotoBLAS 2 PASSED PASSED
GNU gcc 4.1.2 GNU gfortran 4.1.2 MKL PASSED PASSED
Intel icc 11.1 Intel icc ifort 11.1 MKL PASSED PASSED
Intel icc 11.1 Intel icc ifort 11.1 Reference BLAS PASSED PASSED

8.1.4 Linux machine: AMD Opteron

C compiler Fortran compiler BLAS testing testing/lin
GNU gcc 4.1.2 GNU gfortran 4.1.2 Reference BLAS PASSED PASSED
GNU gcc 4.1.2 GNU gfortran 4.1.2 ACML 14.3.0 PASSED PASSED

PATHSCALE pathcc 2.5 PATHSCALE pathf90 2.5 INTEL MKL 10.0.1 PASSED PASSED
PORTLAND pgcc 8.0-6 PORTLAND pgf90 8.0-6 Reference BLAS PASSED PASSED

8.1.5 Linux machine: IBM Power6

C compiler Fortran compiler BLAS testing testing/lin
GNU gcc 4.3.1 GNU gfortran 4.3.2 Reference BLAS PASSED PASSED
GNU gcc 4.3.1 GNU gfortran 4.3.2 ATLAS PASSED PASSED
GNU gcc 4.3.1 GNU gfortran 4.3.2 ACML PASSED PASSED
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8.1. WRONG RESULTS

8.1.6 Non-Linux machine

Machine C compiler Fortran compiler BLAS testing testing/lin
MAC OS/X Snow Leopard GNU gcc 4.3.0 GNU gfortran 4.3.0 Reference BLAS PASSED PASSED
MAC OS/X Snow Leopard GNU gcc 4.3.0 GNU gfortran 4.3.0 Veclib framework PASSED PASSED

AIX 5.3 IBM XLC 10.1 IBM XLF 12.1 ESSL 4.3 PASSED PASSED

Currently the hardware / software configurations known to fail PLASMA tests are:

• Intel x86-64, GCC, GFORTAN, Goto BLAS,

• Intel x86-64, GCC, GFORTAN, Goto BLAS 2,

• Intel x86-64, ICC, IFORT, Goto BLAS,

• Intel x86-64, ICC, IFORT, Goto BLAS 2.
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