MAGMA  2.3.0
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages

Functions

magma_int_t magma_cpotri (magma_uplo_t uplo, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, magma_int_t *info)
 CPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by CPOTRF. More...
 
magma_int_t magma_cpotri_gpu (magma_uplo_t uplo, magma_int_t n, magmaFloatComplex_ptr dA, magma_int_t ldda, magma_int_t *info)
 CPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by CPOTRF. More...
 
magma_int_t magma_dpotri (magma_uplo_t uplo, magma_int_t n, double *A, magma_int_t lda, magma_int_t *info)
 DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF. More...
 
magma_int_t magma_dpotri_gpu (magma_uplo_t uplo, magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *info)
 DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF. More...
 
magma_int_t magma_spotri (magma_uplo_t uplo, magma_int_t n, float *A, magma_int_t lda, magma_int_t *info)
 SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF. More...
 
magma_int_t magma_spotri_gpu (magma_uplo_t uplo, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *info)
 SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF. More...
 
magma_int_t magma_zpotri (magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *info)
 ZPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by ZPOTRF. More...
 
magma_int_t magma_zpotri_gpu (magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *info)
 ZPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by ZPOTRF. More...
 

Detailed Description

Function Documentation

magma_int_t magma_cpotri ( magma_uplo_t  uplo,
magma_int_t  n,
magmaFloatComplex *  A,
magma_int_t  lda,
magma_int_t *  info 
)

CPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by CPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]ACOMPLEX array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by CPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.
magma_int_t magma_cpotri_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magmaFloatComplex_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

CPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by CPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]dACOMPLEX array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by CPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.
magma_int_t magma_dpotri ( magma_uplo_t  uplo,
magma_int_t  n,
double *  A,
magma_int_t  lda,
magma_int_t *  info 
)

DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]ADOUBLE PRECISION array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.
magma_int_t magma_dpotri_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.
magma_int_t magma_spotri ( magma_uplo_t  uplo,
magma_int_t  n,
float *  A,
magma_int_t  lda,
magma_int_t *  info 
)

SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]AREAL array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by SPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.
magma_int_t magma_spotri_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]dAREAL array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by SPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.
magma_int_t magma_zpotri ( magma_uplo_t  uplo,
magma_int_t  n,
magmaDoubleComplex *  A,
magma_int_t  lda,
magma_int_t *  info 
)

ZPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by ZPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]ACOMPLEX_16 array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by ZPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.
magma_int_t magma_zpotri_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magmaDoubleComplex_ptr  dA,
magma_int_t  ldda,
magma_int_t *  info 
)

ZPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by ZPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]dACOMPLEX_16 array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by ZPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.