MAGMA  2.3.0
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages
potrs: Cholesky forward and back solves

Functions

magma_int_t magma_cpotrs_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaFloatComplex_ptr dB, magma_int_t lddb, magma_int_t *info)
 CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF. More...
 
magma_int_t magma_dpotrs_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t *info)
 DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by DPOTRF. More...
 
magma_int_t magma_spotrs_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info)
 SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by SPOTRF. More...
 
magma_int_t magma_zpotrs_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magmaDoubleComplex_ptr dB, magma_int_t lddb, magma_int_t *info)
 ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF. More...
 

Detailed Description

Function Documentation

magma_int_t magma_cpotrs_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magma_int_t  nrhs,
magmaFloatComplex_ptr  dA,
magma_int_t  ldda,
magmaFloatComplex_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dACOMPLEX array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by CPOTRF.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in,out]dBCOMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_dpotrs_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magma_int_t  nrhs,
magmaDouble_ptr  dA,
magma_int_t  ldda,
magmaDouble_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by DPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by DPOTRF.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in,out]dBDOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_spotrs_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magma_int_t  nrhs,
magmaFloat_ptr  dA,
magma_int_t  ldda,
magmaFloat_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by SPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dAREAL array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by SPOTRF.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in,out]dBREAL array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
magma_int_t magma_zpotrs_gpu ( magma_uplo_t  uplo,
magma_int_t  n,
magma_int_t  nrhs,
magmaDoubleComplex_ptr  dA,
magma_int_t  ldda,
magmaDoubleComplex_ptr  dB,
magma_int_t  lddb,
magma_int_t *  info 
)

ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
[in]dACOMPLEX_16 array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF.
[in]lddaINTEGER The leading dimension of the array A. LDDA >= max(1,N).
[in,out]dBCOMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. LDDB >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value